Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e212 Structured version   Visualization version   GIF version

Theorem e212 42271
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e212.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e212.2 (   𝜑   ▶   𝜃   )
e212.3 (   𝜑   ,   𝜓   ▶   𝜏   )
e212.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e212 (   𝜑   ,   𝜓   ▶   𝜂   )

Proof of Theorem e212
StepHypRef Expression
1 e212.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e212.2 . . 3 (   𝜑   ▶   𝜃   )
32vd12 42220 . 2 (   𝜑   ,   𝜓   ▶   𝜃   )
4 e212.3 . 2 (   𝜑   ,   𝜓   ▶   𝜏   )
5 e212.4 . 2 (𝜒 → (𝜃 → (𝜏𝜂)))
61, 3, 4, 5e222 42256 1 (   𝜑   ,   𝜓   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42189  (   wvd2 42197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd1 42190  df-vd2 42198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator