| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee333 | Structured version Visualization version GIF version | ||
| Description: e333 44753 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee333.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| ee333.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| ee333.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
| ee333.4 | ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) |
| Ref | Expression |
|---|---|
| ee333 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee333.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | 3imp 1111 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3 | ee333.2 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | |
| 4 | 3 | 3imp 1111 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 5 | ee333.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | |
| 6 | 5 | 3imp 1111 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| 7 | ee333.4 | . . 3 ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜁) |
| 9 | 8 | 3exp 1120 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: ee323 44528 ee123 44783 |
| Copyright terms: Public domain | W3C validator |