Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee333 Structured version   Visualization version   GIF version

Theorem ee333 42127
Description: e333 42353 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee333.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee333.2 (𝜑 → (𝜓 → (𝜒𝜏)))
ee333.3 (𝜑 → (𝜓 → (𝜒𝜂)))
ee333.4 (𝜃 → (𝜏 → (𝜂𝜁)))
Assertion
Ref Expression
ee333 (𝜑 → (𝜓 → (𝜒𝜁)))

Proof of Theorem ee333
StepHypRef Expression
1 ee333.1 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
213imp 1110 . . 3 ((𝜑𝜓𝜒) → 𝜃)
3 ee333.2 . . . 4 (𝜑 → (𝜓 → (𝜒𝜏)))
433imp 1110 . . 3 ((𝜑𝜓𝜒) → 𝜏)
5 ee333.3 . . . 4 (𝜑 → (𝜓 → (𝜒𝜂)))
653imp 1110 . . 3 ((𝜑𝜓𝜒) → 𝜂)
7 ee333.4 . . 3 (𝜃 → (𝜏 → (𝜂𝜁)))
82, 4, 6, 7syl3c 66 . 2 ((𝜑𝜓𝜒) → 𝜁)
983exp 1118 1 (𝜑 → (𝜓 → (𝜒𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ee323  42128  ee123  42383
  Copyright terms: Public domain W3C validator