Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp | Structured version Visualization version GIF version |
Description: Exportation inference. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expa 1116 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Copyright terms: Public domain | W3C validator |