Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel00001 Structured version   Visualization version   GIF version

Theorem eel00001 42230
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
eel00001.1 𝜑
eel00001.2 𝜓
eel00001.3 𝜒
eel00001.4 𝜃
eel00001.5 (𝜏𝜂)
eel00001.6 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁)
Assertion
Ref Expression
eel00001 (𝜏𝜁)

Proof of Theorem eel00001
StepHypRef Expression
1 eel00001.5 . 2 (𝜏𝜂)
2 eel00001.3 . . 3 𝜒
3 eel00001.4 . . 3 𝜃
4 eel00001.1 . . . 4 𝜑
5 eel00001.2 . . . 4 𝜓
6 eel00001.6 . . . . 5 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁)
76exp41 434 . . . 4 ((𝜑𝜓) → (𝜒 → (𝜃 → (𝜂𝜁))))
84, 5, 7mp2an 688 . . 3 (𝜒 → (𝜃 → (𝜂𝜁)))
92, 3, 8mp2 9 . 2 (𝜂𝜁)
101, 9syl 17 1 (𝜏𝜁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator