| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel00001 | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| eel00001.1 | ⊢ 𝜑 |
| eel00001.2 | ⊢ 𝜓 |
| eel00001.3 | ⊢ 𝜒 |
| eel00001.4 | ⊢ 𝜃 |
| eel00001.5 | ⊢ (𝜏 → 𝜂) |
| eel00001.6 | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| eel00001 | ⊢ (𝜏 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel00001.5 | . 2 ⊢ (𝜏 → 𝜂) | |
| 2 | eel00001.3 | . . 3 ⊢ 𝜒 | |
| 3 | eel00001.4 | . . 3 ⊢ 𝜃 | |
| 4 | eel00001.1 | . . . 4 ⊢ 𝜑 | |
| 5 | eel00001.2 | . . . 4 ⊢ 𝜓 | |
| 6 | eel00001.6 | . . . . 5 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁) | |
| 7 | 6 | exp41 434 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → (𝜂 → 𝜁)))) |
| 8 | 4, 5, 7 | mp2an 692 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) |
| 9 | 2, 3, 8 | mp2 9 | . 2 ⊢ (𝜂 → 𝜁) |
| 10 | 1, 9 | syl 17 | 1 ⊢ (𝜏 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |