Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel0000 Structured version   Visualization version   GIF version

Theorem eel0000 42293
Description: Elimination rule similar to mp4an 689, except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
eel0000.1 𝜑
eel0000.2 𝜓
eel0000.3 𝜒
eel0000.4 𝜃
eel0000.5 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
eel0000 𝜏

Proof of Theorem eel0000
StepHypRef Expression
1 eel0000.3 . 2 𝜒
2 eel0000.4 . 2 𝜃
3 eel0000.1 . . 3 𝜑
4 eel0000.2 . . 3 𝜓
5 eel0000.5 . . . 4 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
65exp41 434 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
73, 4, 6mp2 9 . 2 (𝜒 → (𝜃𝜏))
81, 2, 7mp2 9 1 𝜏
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator