|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel00000 | Structured version Visualization version GIF version | ||
| Description: Elimination rule similar eel0000 44740, except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| eel00000.1 | ⊢ 𝜑 | 
| eel00000.2 | ⊢ 𝜓 | 
| eel00000.3 | ⊢ 𝜒 | 
| eel00000.4 | ⊢ 𝜃 | 
| eel00000.5 | ⊢ 𝜏 | 
| eel00000.6 | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
| Ref | Expression | 
|---|---|
| eel00000 | ⊢ 𝜂 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eel00000.4 | . 2 ⊢ 𝜃 | |
| 2 | eel00000.5 | . 2 ⊢ 𝜏 | |
| 3 | eel00000.2 | . . 3 ⊢ 𝜓 | |
| 4 | eel00000.3 | . . 3 ⊢ 𝜒 | |
| 5 | eel00000.1 | . . . 4 ⊢ 𝜑 | |
| 6 | eel00000.6 | . . . . 5 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 6 | exp41 434 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) | 
| 8 | 5, 7 | mpan 690 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) | 
| 9 | 3, 4, 8 | mp2 9 | . 2 ⊢ (𝜃 → (𝜏 → 𝜂)) | 
| 10 | 1, 2, 9 | mp2 9 | 1 ⊢ 𝜂 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |