Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel00000 Structured version   Visualization version   GIF version

Theorem eel00000 42231
Description: Elimination rule similar eel0000 42229, except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
eel00000.1 𝜑
eel00000.2 𝜓
eel00000.3 𝜒
eel00000.4 𝜃
eel00000.5 𝜏
eel00000.6 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
eel00000 𝜂

Proof of Theorem eel00000
StepHypRef Expression
1 eel00000.4 . 2 𝜃
2 eel00000.5 . 2 𝜏
3 eel00000.2 . . 3 𝜓
4 eel00000.3 . . 3 𝜒
5 eel00000.1 . . . 4 𝜑
6 eel00000.6 . . . . 5 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
76exp41 434 . . . 4 ((𝜑𝜓) → (𝜒 → (𝜃 → (𝜏𝜂))))
85, 7mpan 686 . . 3 (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))
93, 4, 8mp2 9 . 2 (𝜃 → (𝜏𝜂))
101, 2, 9mp2 9 1 𝜂
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator