| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8413 supxrun 13276 injresinj 13749 fi1uzind 14472 brfi1indALT 14475 swrdswrdlem 14669 swrdswrd 14670 2cshwcshw 14791 cshwcsh2id 14794 prmgaplem6 17027 cusgrsize2inds 29381 usgr2pthlem 29693 usgr2pth 29694 elwwlks2 29896 rusgrnumwwlks 29904 clwlkclwwlklem2a4 29926 clwlkclwwlklem2 29929 umgrhashecclwwlk 30007 1to3vfriswmgr 30209 frgrnbnb 30222 branmfn 32034 elrspunidl 33399 dfufd2lem 33520 zarcmplem 33871 relowlpssretop 37352 broucube 37648 eel0000 44709 eel00001 44710 eel00000 44711 eel11111 44712 climrec 45601 bgoldbtbndlem4 47809 bgoldbtbnd 47810 tgoldbach 47818 2zlidl 48228 2zrngmmgm 48240 lincsumcl 48420 |
| Copyright terms: Public domain | W3C validator |