| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8416 supxrun 13283 injresinj 13756 fi1uzind 14479 brfi1indALT 14482 swrdswrdlem 14676 swrdswrd 14677 2cshwcshw 14798 cshwcsh2id 14801 prmgaplem6 17034 cusgrsize2inds 29388 usgr2pthlem 29700 usgr2pth 29701 elwwlks2 29903 rusgrnumwwlks 29911 clwlkclwwlklem2a4 29933 clwlkclwwlklem2 29936 umgrhashecclwwlk 30014 1to3vfriswmgr 30216 frgrnbnb 30229 branmfn 32041 elrspunidl 33406 dfufd2lem 33527 zarcmplem 33878 relowlpssretop 37359 broucube 37655 eel0000 44716 eel00001 44717 eel00000 44718 eel11111 44719 climrec 45608 bgoldbtbndlem4 47813 bgoldbtbnd 47814 tgoldbach 47822 2zlidl 48232 2zrngmmgm 48244 lincsumcl 48424 |
| Copyright terms: Public domain | W3C validator |