Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad5ant2345 1368 tz7.49 8246 supxrun 12979 injresinj 13436 fi1uzind 14139 brfi1indALT 14142 swrdswrdlem 14345 swrdswrd 14346 2cshwcshw 14466 cshwcsh2id 14469 prmgaplem6 16685 cusgrsize2inds 27723 usgr2pthlem 28032 usgr2pth 28033 elwwlks2 28232 rusgrnumwwlks 28240 clwlkclwwlklem2a4 28262 clwlkclwwlklem2 28265 umgrhashecclwwlk 28343 1to3vfriswmgr 28545 frgrnbnb 28558 branmfn 30368 elrspunidl 31508 zarcmplem 31733 relowlpssretop 35462 broucube 35738 eel0000 42229 eel00001 42230 eel00000 42231 eel11111 42232 climrec 43034 bgoldbtbndlem4 45148 bgoldbtbnd 45149 tgoldbach 45157 isomuspgr 45174 2zlidl 45380 2zrngmmgm 45392 lincsumcl 45660 |
Copyright terms: Public domain | W3C validator |