| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8374 supxrun 13237 injresinj 13710 fi1uzind 14433 brfi1indALT 14436 swrdswrdlem 14629 swrdswrd 14630 2cshwcshw 14751 cshwcsh2id 14754 prmgaplem6 16987 cusgrsize2inds 29418 usgr2pthlem 29727 usgr2pth 29728 elwwlks2 29930 rusgrnumwwlks 29938 clwlkclwwlklem2a4 29960 clwlkclwwlklem2 29963 umgrhashecclwwlk 30041 1to3vfriswmgr 30243 frgrnbnb 30256 branmfn 32068 elrspunidl 33384 dfufd2lem 33505 zarcmplem 33867 relowlpssretop 37357 broucube 37653 eel0000 44713 eel00001 44714 eel00000 44715 eel11111 44716 climrec 45604 bgoldbtbndlem4 47812 bgoldbtbnd 47813 tgoldbach 47821 2zlidl 48244 2zrngmmgm 48256 lincsumcl 48436 |
| Copyright terms: Public domain | W3C validator |