| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8359 supxrun 13210 injresinj 13686 fi1uzind 14409 brfi1indALT 14412 swrdswrdlem 14606 swrdswrd 14607 2cshwcshw 14727 cshwcsh2id 14730 prmgaplem6 16963 cusgrsize2inds 29427 usgr2pthlem 29736 usgr2pth 29737 elwwlks2 29939 rusgrnumwwlks 29947 clwlkclwwlklem2a4 29969 clwlkclwwlklem2 29972 umgrhashecclwwlk 30050 1to3vfriswmgr 30252 frgrnbnb 30265 branmfn 32077 elrspunidl 33385 dfufd2lem 33506 zarcmplem 33886 relowlpssretop 37398 broucube 37694 eel0000 44752 eel00001 44753 eel00000 44754 eel11111 44755 climrec 45643 bgoldbtbndlem4 47839 bgoldbtbnd 47840 tgoldbach 47848 2zlidl 48271 2zrngmmgm 48283 lincsumcl 48463 |
| Copyright terms: Public domain | W3C validator |