![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad5ant2345 1369 tz7.49 8484 supxrun 13355 injresinj 13824 fi1uzind 14543 brfi1indALT 14546 swrdswrdlem 14739 swrdswrd 14740 2cshwcshw 14861 cshwcsh2id 14864 prmgaplem6 17090 cusgrsize2inds 29486 usgr2pthlem 29796 usgr2pth 29797 elwwlks2 29996 rusgrnumwwlks 30004 clwlkclwwlklem2a4 30026 clwlkclwwlklem2 30029 umgrhashecclwwlk 30107 1to3vfriswmgr 30309 frgrnbnb 30322 branmfn 32134 elrspunidl 33436 dfufd2lem 33557 zarcmplem 33842 relowlpssretop 37347 broucube 37641 eel0000 44718 eel00001 44719 eel00000 44720 eel11111 44721 climrec 45559 bgoldbtbndlem4 47733 bgoldbtbnd 47734 tgoldbach 47742 2zlidl 48084 2zrngmmgm 48096 lincsumcl 48277 |
Copyright terms: Public domain | W3C validator |