![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad5ant2345 1367 tz7.49 8440 supxrun 13292 injresinj 13750 fi1uzind 14455 brfi1indALT 14458 swrdswrdlem 14651 swrdswrd 14652 2cshwcshw 14773 cshwcsh2id 14776 prmgaplem6 16988 cusgrsize2inds 29179 usgr2pthlem 29489 usgr2pth 29490 elwwlks2 29689 rusgrnumwwlks 29697 clwlkclwwlklem2a4 29719 clwlkclwwlklem2 29722 umgrhashecclwwlk 29800 1to3vfriswmgr 30002 frgrnbnb 30015 branmfn 31827 elrspunidl 33015 zarcmplem 33350 relowlpssretop 36735 broucube 37012 eel0000 43970 eel00001 43971 eel00000 43972 eel11111 43973 climrec 44804 bgoldbtbndlem4 46961 bgoldbtbnd 46962 tgoldbach 46970 isomuspgr 46987 2zlidl 47103 2zrngmmgm 47115 lincsumcl 47300 |
Copyright terms: Public domain | W3C validator |