| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8459 supxrun 13332 injresinj 13804 fi1uzind 14525 brfi1indALT 14528 swrdswrdlem 14722 swrdswrd 14723 2cshwcshw 14844 cshwcsh2id 14847 prmgaplem6 17076 cusgrsize2inds 29433 usgr2pthlem 29745 usgr2pth 29746 elwwlks2 29948 rusgrnumwwlks 29956 clwlkclwwlklem2a4 29978 clwlkclwwlklem2 29981 umgrhashecclwwlk 30059 1to3vfriswmgr 30261 frgrnbnb 30274 branmfn 32086 elrspunidl 33443 dfufd2lem 33564 zarcmplem 33912 relowlpssretop 37382 broucube 37678 eel0000 44744 eel00001 44745 eel00000 44746 eel11111 44747 climrec 45632 bgoldbtbndlem4 47822 bgoldbtbnd 47823 tgoldbach 47831 2zlidl 48215 2zrngmmgm 48227 lincsumcl 48407 |
| Copyright terms: Public domain | W3C validator |