![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 402 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 411 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: syl1111anc 869 ad5ant2345 1490 tz7.49 7780 supxrun 12394 injresinj 12843 fi1uzind 13527 brfi1indALT 13530 swrdswrdlem 13746 swrdswrd 13747 2cshwcshw 13909 cshwcsh2id 13912 prmgaplem6 16092 cusgrsize2inds 26702 usgr2pthlem 27016 usgr2pth 27017 wwlksnext 27161 elwwlks2 27256 rusgrnumwwlks 27264 rusgrnumwwlksOLD 27265 clwlkclwwlklem2a4 27289 clwlkclwwlklem2 27292 umgrhashecclwwlk 27395 clwlksfclwwlkOLD 27402 1to3vfriswmgr 27628 frgrnbnb 27641 branmfn 29488 relowlpssretop 33709 broucube 33931 eel0001 39710 eel0000 39711 eel00001 39712 eel00000 39713 eel11111 39714 climrec 40574 bgoldbtbndlem4 42473 bgoldbtbnd 42474 tgoldbach 42482 isomuspgr 42499 2zlidl 42728 2zrngmmgm 42740 lincsumcl 43014 |
Copyright terms: Public domain | W3C validator |