| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad5ant2345 1372 tz7.49 8390 supxrun 13252 injresinj 13725 fi1uzind 14448 brfi1indALT 14451 swrdswrdlem 14645 swrdswrd 14646 2cshwcshw 14767 cshwcsh2id 14770 prmgaplem6 17003 cusgrsize2inds 29357 usgr2pthlem 29666 usgr2pth 29667 elwwlks2 29869 rusgrnumwwlks 29877 clwlkclwwlklem2a4 29899 clwlkclwwlklem2 29902 umgrhashecclwwlk 29980 1to3vfriswmgr 30182 frgrnbnb 30195 branmfn 32007 elrspunidl 33372 dfufd2lem 33493 zarcmplem 33844 relowlpssretop 37325 broucube 37621 eel0000 44682 eel00001 44683 eel00000 44684 eel11111 44685 climrec 45574 bgoldbtbndlem4 47782 bgoldbtbnd 47783 tgoldbach 47791 2zlidl 48201 2zrngmmgm 48213 lincsumcl 48393 |
| Copyright terms: Public domain | W3C validator |