![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad5ant2345 1370 tz7.49 8501 supxrun 13378 injresinj 13838 fi1uzind 14556 brfi1indALT 14559 swrdswrdlem 14752 swrdswrd 14753 2cshwcshw 14874 cshwcsh2id 14877 prmgaplem6 17103 cusgrsize2inds 29489 usgr2pthlem 29799 usgr2pth 29800 elwwlks2 29999 rusgrnumwwlks 30007 clwlkclwwlklem2a4 30029 clwlkclwwlklem2 30032 umgrhashecclwwlk 30110 1to3vfriswmgr 30312 frgrnbnb 30325 branmfn 32137 elrspunidl 33421 dfufd2lem 33542 zarcmplem 33827 relowlpssretop 37330 broucube 37614 eel0000 44691 eel00001 44692 eel00000 44693 eel11111 44694 climrec 45524 bgoldbtbndlem4 47682 bgoldbtbnd 47683 tgoldbach 47691 2zlidl 47963 2zrngmmgm 47975 lincsumcl 48160 |
Copyright terms: Public domain | W3C validator |