Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eelT1 | Structured version Visualization version GIF version |
Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eelT1.1 | ⊢ (⊤ → 𝜑) |
eelT1.2 | ⊢ (𝜓 → 𝜒) |
eelT1.3 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
eelT1 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eelT1.1 | . . 3 ⊢ (⊤ → 𝜑) | |
2 | 1 | mptru 1550 | . 2 ⊢ 𝜑 |
3 | eelT1.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | eelT1.3 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
5 | 2, 3, 4 | sylancr 590 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊤wtru 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |