Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eelT12 Structured version   Visualization version   GIF version

Theorem eelT12 41275
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eelT12.1 (⊤ → 𝜑)
eelT12.2 (𝜓𝜒)
eelT12.3 (𝜃𝜏)
eelT12.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
eelT12 ((𝜓𝜃) → 𝜂)

Proof of Theorem eelT12
StepHypRef Expression
1 3anass 1092 . . 3 ((⊤ ∧ 𝜓𝜃) ↔ (⊤ ∧ (𝜓𝜃)))
2 truan 1549 . . 3 ((⊤ ∧ (𝜓𝜃)) ↔ (𝜓𝜃))
31, 2bitri 278 . 2 ((⊤ ∧ 𝜓𝜃) ↔ (𝜓𝜃))
4 eelT12.3 . . 3 (𝜃𝜏)
5 eelT12.2 . . . 4 (𝜓𝜒)
6 eelT12.1 . . . . 5 (⊤ → 𝜑)
7 eelT12.4 . . . . 5 ((𝜑𝜒𝜏) → 𝜂)
86, 7syl3an1 1160 . . . 4 ((⊤ ∧ 𝜒𝜏) → 𝜂)
95, 8syl3an2 1161 . . 3 ((⊤ ∧ 𝜓𝜏) → 𝜂)
104, 9syl3an3 1162 . 2 ((⊤ ∧ 𝜓𝜃) → 𝜂)
113, 10sylbir 238 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wtru 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-tru 1541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator