Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eelT12 | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eelT12.1 | ⊢ (⊤ → 𝜑) |
eelT12.2 | ⊢ (𝜓 → 𝜒) |
eelT12.3 | ⊢ (𝜃 → 𝜏) |
eelT12.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
eelT12 | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1093 | . . 3 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜃) ↔ (⊤ ∧ (𝜓 ∧ 𝜃))) | |
2 | truan 1552 | . . 3 ⊢ ((⊤ ∧ (𝜓 ∧ 𝜃)) ↔ (𝜓 ∧ 𝜃)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜃) ↔ (𝜓 ∧ 𝜃)) |
4 | eelT12.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
5 | eelT12.2 | . . . 4 ⊢ (𝜓 → 𝜒) | |
6 | eelT12.1 | . . . . 5 ⊢ (⊤ → 𝜑) | |
7 | eelT12.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
8 | 6, 7 | syl3an1 1161 | . . . 4 ⊢ ((⊤ ∧ 𝜒 ∧ 𝜏) → 𝜂) |
9 | 5, 8 | syl3an2 1162 | . . 3 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜏) → 𝜂) |
10 | 4, 9 | syl3an3 1163 | . 2 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜃) → 𝜂) |
11 | 3, 10 | sylbir 234 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ⊤wtru 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |