Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eelT11 Structured version   Visualization version   GIF version

Theorem eelT11 42216
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eelT11.1 (⊤ → 𝜑)
eelT11.2 (𝜓𝜒)
eelT11.3 (𝜓𝜃)
eelT11.4 ((𝜑𝜒𝜃) → 𝜏)
Assertion
Ref Expression
eelT11 (𝜓𝜏)

Proof of Theorem eelT11
StepHypRef Expression
1 3anass 1093 . . 3 ((⊤ ∧ 𝜓𝜓) ↔ (⊤ ∧ (𝜓𝜓)))
2 truan 1550 . . 3 ((⊤ ∧ (𝜓𝜓)) ↔ (𝜓𝜓))
3 anidm 564 . . 3 ((𝜓𝜓) ↔ 𝜓)
41, 2, 33bitri 296 . 2 ((⊤ ∧ 𝜓𝜓) ↔ 𝜓)
5 eelT11.3 . . 3 (𝜓𝜃)
6 eelT11.2 . . . 4 (𝜓𝜒)
7 eelT11.1 . . . . 5 (⊤ → 𝜑)
8 eelT11.4 . . . . 5 ((𝜑𝜒𝜃) → 𝜏)
97, 8syl3an1 1161 . . . 4 ((⊤ ∧ 𝜒𝜃) → 𝜏)
106, 9syl3an2 1162 . . 3 ((⊤ ∧ 𝜓𝜃) → 𝜏)
115, 10syl3an3 1163 . 2 ((⊤ ∧ 𝜓𝜓) → 𝜏)
124, 11sylbir 234 1 (𝜓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator