Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efald | Structured version Visualization version GIF version |
Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
efald.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → ⊥) |
Ref | Expression |
---|---|
efald | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efald.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ⊥) | |
2 | 1 | inegd 1559 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 |
This theorem is referenced by: ablsimpgfind 19628 efald2 36163 |
Copyright terms: Public domain | W3C validator |