Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  efald2 Structured version   Visualization version   GIF version

Theorem efald2 35461
Description: A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypothesis
Ref Expression
efald2.1 𝜑 → ⊥)
Assertion
Ref Expression
efald2 𝜑

Proof of Theorem efald2
StepHypRef Expression
1 efald2.1 . . . 4 𝜑 → ⊥)
21adantl 485 . . 3 ((⊤ ∧ ¬ 𝜑) → ⊥)
32efald 1559 . 2 (⊤ → 𝜑)
43mptru 1545 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wtru 1539  wfal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-fal 1551
This theorem is referenced by:  mpobi123f  35545  mptbi12f  35549  ac6s6  35555
  Copyright terms: Public domain W3C validator