|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inegd | Structured version Visualization version GIF version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) | 
| Ref | Expression | 
|---|---|
| inegd | ⊢ (𝜑 → ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) | 
| 3 | dfnot 1558 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → ¬ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: efald 1560 tglndim0 28638 archiabllem2c 33203 rprmirred 33560 ply1dg3rt0irred 33608 lindsun 33677 | 
| Copyright terms: Public domain | W3C validator |