Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfind Structured version   Visualization version   GIF version

Theorem ablsimpgfind 19300
 Description: An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgfind.1 𝐵 = (Base‘𝐺)
ablsimpgfind.2 (𝜑𝐺 ∈ Abel)
ablsimpgfind.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfind (𝜑𝐵 ∈ Fin)

Proof of Theorem ablsimpgfind
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐵 ∈ Fin)
21iffalsed 4431 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = 0)
3 ablsimpgfind.1 . . . . . . 7 𝐵 = (Base‘𝐺)
4 eqid 2758 . . . . . . 7 (0g𝐺) = (0g𝐺)
5 ablsimpgfind.3 . . . . . . 7 (𝜑𝐺 ∈ SimpGrp)
63, 4, 5simpgnideld 19289 . . . . . 6 (𝜑 → ∃𝑥𝐵 ¬ 𝑥 = (0g𝐺))
7 neqne 2959 . . . . . . 7 𝑥 = (0g𝐺) → 𝑥 ≠ (0g𝐺))
87reximi 3171 . . . . . 6 (∃𝑥𝐵 ¬ 𝑥 = (0g𝐺) → ∃𝑥𝐵 𝑥 ≠ (0g𝐺))
96, 8syl 17 . . . . 5 (𝜑 → ∃𝑥𝐵 𝑥 ≠ (0g𝐺))
10 eqid 2758 . . . . . . 7 (.g𝐺) = (.g𝐺)
11 eqid 2758 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
125simpggrpd 19285 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
1312adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐺 ∈ Grp)
14 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝑥𝐵)
15 ablsimpgfind.2 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
1615ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝐺 ∈ Abel)
175ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝐺 ∈ SimpGrp)
1814adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑥𝐵)
19 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑥 ≠ (0g𝐺))
2019neneqd 2956 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → ¬ 𝑥 = (0g𝐺))
21 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑦𝐵)
223, 4, 10, 16, 17, 18, 20, 21ablsimpg1gend 19295 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥))
2322ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (𝑦𝐵 → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
24 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑦 = (𝑛(.g𝐺)𝑥))
2512ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝐺 ∈ Grp)
26 simprl 770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑛 ∈ ℤ)
2714adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑥𝐵)
283, 10, 25, 26, 27mulgcld 18316 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → (𝑛(.g𝐺)𝑥) ∈ 𝐵)
2924, 28eqeltrd 2852 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑦𝐵)
3029rexlimdvaa 3209 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → 𝑦𝐵))
3123, 30impbid 215 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (𝑦𝐵 ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
3231abbi2dv 2889 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐵 = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)})
33 eqid 2758 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))
3433rnmpt 5796 . . . . . . . 8 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)}
3532, 34eqtr4di 2811 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)))
363, 10, 11, 13, 14, 35cycsubggenodd 19299 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → ((od‘𝐺)‘𝑥) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
373, 4, 10, 11, 15, 5ablsimpgfindlem2 19298 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (2(.g𝐺)𝑥) = (0g𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0)
383, 4, 10, 11, 15, 5ablsimpgfindlem1 19297 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (2(.g𝐺)𝑥) ≠ (0g𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0)
3937, 38pm2.61dane 3038 . . . . . . 7 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ≠ 0)
4039adantrr 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → ((od‘𝐺)‘𝑥) ≠ 0)
4136, 40eqnetrrd 3019 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
429, 41rexlimddv 3215 . . . 4 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
4342adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
442, 43pm2.21ddne 3035 . 2 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ⊥)
4544efald 1559 1 (𝜑𝐵 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ⊥wfal 1550   ∈ wcel 2111  {cab 2735   ≠ wne 2951  ∃wrex 3071  ifcif 4420   ↦ cmpt 5112  ran crn 5525  ‘cfv 6335  (class class class)co 7150  Fincfn 8527  0cc0 10575  2c2 11729  ℤcz 12020  ♯chash 13740  Basecbs 16541  0gc0g 16771  Grpcgrp 18169  .gcmg 18291  odcod 18719  Abelcabl 18974  SimpGrpcsimpg 19280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-nsg 18344  df-od 18723  df-cmn 18975  df-abl 18976  df-simpg 19281 This theorem is referenced by:  ablsimpgprmd  19305
 Copyright terms: Public domain W3C validator