Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐵 ∈ Fin) |
2 | 1 | iffalsed 4470 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = 0) |
3 | | ablsimpgfind.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
5 | | ablsimpgfind.3 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
6 | 3, 4, 5 | simpgnideld 19702 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ¬ 𝑥 = (0g‘𝐺)) |
7 | | neqne 2951 |
. . . . . . 7
⊢ (¬
𝑥 =
(0g‘𝐺)
→ 𝑥 ≠
(0g‘𝐺)) |
8 | 7 | reximi 3178 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐵 ¬ 𝑥 = (0g‘𝐺) → ∃𝑥 ∈ 𝐵 𝑥 ≠ (0g‘𝐺)) |
9 | 6, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑥 ≠ (0g‘𝐺)) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(.g‘𝐺) = (.g‘𝐺) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(od‘𝐺) =
(od‘𝐺) |
12 | 5 | simpggrpd 19698 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → 𝐺 ∈ Grp) |
14 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → 𝑥 ∈ 𝐵) |
15 | | ablsimpgfind.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Abel) |
16 | 15 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ Abel) |
17 | 5 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ SimpGrp) |
18 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
19 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → 𝑥 ≠ (0g‘𝐺)) |
20 | 19 | neneqd 2948 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → ¬ 𝑥 = (0g‘𝐺)) |
21 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
22 | 3, 4, 10, 16, 17, 18, 20, 21 | ablsimpg1gend 19708 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) |
23 | 22 | ex 413 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → (𝑦 ∈ 𝐵 → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥))) |
24 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → 𝑦 = (𝑛(.g‘𝐺)𝑥)) |
25 | 12 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → 𝐺 ∈ Grp) |
26 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → 𝑛 ∈ ℤ) |
27 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → 𝑥 ∈ 𝐵) |
28 | 3, 10, 25, 26, 27 | mulgcld 18725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → (𝑛(.g‘𝐺)𝑥) ∈ 𝐵) |
29 | 24, 28 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g‘𝐺)𝑥))) → 𝑦 ∈ 𝐵) |
30 | 29 | rexlimdvaa 3214 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥) → 𝑦 ∈ 𝐵)) |
31 | 23, 30 | impbid 211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → (𝑦 ∈ 𝐵 ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥))) |
32 | 31 | abbi2dv 2877 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → 𝐵 = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)}) |
33 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) |
34 | 33 | rnmpt 5864 |
. . . . . . . 8
⊢ ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥)) = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)} |
35 | 32, 34 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → 𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))) |
36 | 3, 10, 11, 13, 14, 35 | cycsubggenodd 19712 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → ((od‘𝐺)‘𝑥) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
37 | 3, 4, 10, 11, 15, 5 | ablsimpgfindlem2 19711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2(.g‘𝐺)𝑥) = (0g‘𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0) |
38 | 3, 4, 10, 11, 15, 5 | ablsimpgfindlem1 19710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2(.g‘𝐺)𝑥) ≠ (0g‘𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0) |
39 | 37, 38 | pm2.61dane 3032 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ≠ 0) |
40 | 39 | adantrr 714 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → ((od‘𝐺)‘𝑥) ≠ 0) |
41 | 36, 40 | eqnetrrd 3012 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ (0g‘𝐺))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0) |
42 | 9, 41 | rexlimddv 3220 |
. . . 4
⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0) |
43 | 42 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0) |
44 | 2, 43 | pm2.21ddne 3029 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ⊥) |
45 | 44 | efald 1560 |
1
⊢ (𝜑 → 𝐵 ∈ Fin) |