![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version |
Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 30435. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
Ref | Expression |
---|---|
notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
Ref | Expression |
---|---|
notnotrd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: condan 817 ecase2d 1030 efald 1558 necon1ai 2974 supgtoreq 9539 konigthlem 10637 indpi 10976 sqrmo 15300 2sqcoprm 27497 axtgupdim2 28497 ncoltgdim2 28591 ex-natded5.13 30447 bnj1204 34988 knoppndvlem10 36487 hashnexinj 42085 supxrgere 45248 supxrgelem 45252 supxrge 45253 iccdifprioo 45434 icccncfext 45808 stirlinglem5 45999 sge0repnf 46307 sge0split 46330 nnfoctbdjlem 46376 nabctnabc 46846 |
Copyright terms: Public domain | W3C validator |