MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnotrd Structured version   Visualization version   GIF version

Theorem notnotrd 133
Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ¬ ¬ 𝜓 ⇒ Γ𝜓; see natded 28668. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.)
Hypothesis
Ref Expression
notnotrd.1 (𝜑 → ¬ ¬ 𝜓)
Assertion
Ref Expression
notnotrd (𝜑𝜓)

Proof of Theorem notnotrd
StepHypRef Expression
1 notnotrd.1 . 2 (𝜑 → ¬ ¬ 𝜓)
2 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  condan  814  ecase2d  1026  efald  1560  necon1ai  2970  supgtoreq  9159  konigthlem  10255  indpi  10594  sqrmo  14891  2sqcoprm  26488  axtgupdim2  26736  ncoltgdim2  26830  ex-natded5.13  28680  bnj1204  32892  knoppndvlem10  34628  supxrgere  42762  supxrgelem  42766  supxrge  42767  iccdifprioo  42944  icccncfext  43318  stirlinglem5  43509  sge0repnf  43814  sge0split  43837  nnfoctbdjlem  43883  nabctnabc  44313
  Copyright terms: Public domain W3C validator