| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 30389. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
| Ref | Expression |
|---|---|
| notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| notnotrd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: condan 817 ecase2d 1031 efald 1561 necon1ai 2960 supgtoreq 9488 konigthlem 10587 indpi 10926 sqrmo 15275 2sqcoprm 27403 axtgupdim2 28455 ncoltgdim2 28549 ex-natded5.13 30401 bnj1204 35048 knoppndvlem10 36544 hashnexinj 42146 supxrgere 45327 supxrgelem 45331 supxrge 45332 iccdifprioo 45512 icccncfext 45883 stirlinglem5 46074 sge0repnf 46382 sge0split 46405 nnfoctbdjlem 46451 nabctnabc 46927 |
| Copyright terms: Public domain | W3C validator |