Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version |
Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 28668. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
Ref | Expression |
---|---|
notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
Ref | Expression |
---|---|
notnotrd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: condan 814 ecase2d 1026 efald 1560 necon1ai 2970 supgtoreq 9159 konigthlem 10255 indpi 10594 sqrmo 14891 2sqcoprm 26488 axtgupdim2 26736 ncoltgdim2 26830 ex-natded5.13 28680 bnj1204 32892 knoppndvlem10 34628 supxrgere 42762 supxrgelem 42766 supxrge 42767 iccdifprioo 42944 icccncfext 43318 stirlinglem5 43509 sge0repnf 43814 sge0split 43837 nnfoctbdjlem 43883 nabctnabc 44313 |
Copyright terms: Public domain | W3C validator |