![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version |
Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 30432. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
Ref | Expression |
---|---|
notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
Ref | Expression |
---|---|
notnotrd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: condan 818 ecase2d 1031 efald 1558 necon1ai 2966 supgtoreq 9508 konigthlem 10606 indpi 10945 sqrmo 15287 2sqcoprm 27494 axtgupdim2 28494 ncoltgdim2 28588 ex-natded5.13 30444 bnj1204 35005 knoppndvlem10 36504 hashnexinj 42110 supxrgere 45283 supxrgelem 45287 supxrge 45288 iccdifprioo 45469 icccncfext 45843 stirlinglem5 46034 sge0repnf 46342 sge0split 46365 nnfoctbdjlem 46411 nabctnabc 46881 |
Copyright terms: Public domain | W3C validator |