MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnotrd Structured version   Visualization version   GIF version

Theorem notnotrd 133
Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ¬ ¬ 𝜓 ⇒ Γ𝜓; see natded 30389. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.)
Hypothesis
Ref Expression
notnotrd.1 (𝜑 → ¬ ¬ 𝜓)
Assertion
Ref Expression
notnotrd (𝜑𝜓)

Proof of Theorem notnotrd
StepHypRef Expression
1 notnotrd.1 . 2 (𝜑 → ¬ ¬ 𝜓)
2 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  condan  817  ecase2d  1031  efald  1561  necon1ai  2960  supgtoreq  9488  konigthlem  10587  indpi  10926  sqrmo  15275  2sqcoprm  27403  axtgupdim2  28455  ncoltgdim2  28549  ex-natded5.13  30401  bnj1204  35048  knoppndvlem10  36544  hashnexinj  42146  supxrgere  45327  supxrgelem  45331  supxrge  45332  iccdifprioo  45512  icccncfext  45883  stirlinglem5  46074  sge0repnf  46382  sge0split  46405  nnfoctbdjlem  46451  nabctnabc  46927
  Copyright terms: Public domain W3C validator