| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 30382. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
| Ref | Expression |
|---|---|
| notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| notnotrd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: condan 817 ecase2d 1031 efald 1561 necon1ai 2952 supgtoreq 9398 konigthlem 10497 indpi 10836 sqrmo 15193 2sqcoprm 27379 axtgupdim2 28451 ncoltgdim2 28545 ex-natded5.13 30394 bnj1204 34995 knoppndvlem10 36502 hashnexinj 42109 supxrgere 45322 supxrgelem 45326 supxrge 45327 iccdifprioo 45507 icccncfext 45878 stirlinglem5 46069 sge0repnf 46377 sge0split 46400 nnfoctbdjlem 46446 nabctnabc 46925 |
| Copyright terms: Public domain | W3C validator |