| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ⊢ ¬ ¬ 𝜓 ⇒ Γ⊢ 𝜓; see natded 30383. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.) |
| Ref | Expression |
|---|---|
| notnotrd.1 | ⊢ (𝜑 → ¬ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| notnotrd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotrd.1 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜓) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: condan 817 ecase2d 1031 efald 1562 necon1ai 2955 supgtoreq 9355 konigthlem 10459 indpi 10798 sqrmo 15158 2sqcoprm 27373 axtgupdim2 28449 ncoltgdim2 28543 ex-natded5.13 30395 bnj1204 35024 knoppndvlem10 36565 hashnexinj 42220 supxrgere 45431 supxrgelem 45435 supxrge 45436 iccdifprioo 45615 icccncfext 45984 stirlinglem5 46175 sge0repnf 46483 sge0split 46506 nnfoctbdjlem 46552 nabctnabc 47030 |
| Copyright terms: Public domain | W3C validator |