MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeq12dOLD Structured version   Visualization version   GIF version

Theorem eqeq12dOLD 2757
Description: Obsolete version of eqeq12d 2753 as of 23-Oct-2024. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
eqeq12dOLD.1 (𝜑𝐴 = 𝐵)
eqeq12dOLD.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
eqeq12dOLD (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem eqeq12dOLD
StepHypRef Expression
1 eqeq12dOLD.1 . 2 (𝜑𝐴 = 𝐵)
2 eqeq12dOLD.2 . 2 (𝜑𝐶 = 𝐷)
3 eqeq12OLD 2756 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
41, 2, 3syl2anc 587 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-cleq 2729
This theorem is referenced by:  eqeqan12dOLD  2758
  Copyright terms: Public domain W3C validator