MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeq12OLD Structured version   Visualization version   GIF version

Theorem eqeq12OLD 2758
Description: Obsolete version of eqeq12 2756 as of 23-Oct-2024. (Contributed by NM, 3-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
eqeq12OLD ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem eqeq12OLD
StepHypRef Expression
1 eqeq1 2743 . 2 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
2 eqeq2 2751 . 2 (𝐶 = 𝐷 → (𝐵 = 𝐶𝐵 = 𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731
This theorem is referenced by:  eqeq12dOLD  2759
  Copyright terms: Public domain W3C validator