Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12OLD | Structured version Visualization version GIF version |
Description: Obsolete version of eqeq12 2755 as of 23-Oct-2024. (Contributed by NM, 3-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
eqeq12OLD | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqeq2 2750 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) | |
3 | 1, 2 | sylan9bb 510 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: eqeq12dOLD 2758 |
Copyright terms: Public domain | W3C validator |