MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnortru Structured version   Visualization version   GIF version

Theorem falnortru 1588
Description: A identity. (Contributed by Remi, 25-Oct-2023.)
Assertion
Ref Expression
falnortru ((⊥ ⊤) ↔ ⊥)

Proof of Theorem falnortru
StepHypRef Expression
1 norcom 1527 . 2 ((⊥ ⊤) ↔ (⊤ ⊥))
2 trunorfal 1587 . 2 ((⊤ ⊥) ↔ ⊥)
31, 2bitri 275 1 ((⊥ ⊤) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 206   wnor 1525  wtru 1538  wfal 1549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-nor 1526  df-tru 1540  df-fal 1550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator