Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falnortru | Structured version Visualization version GIF version |
Description: A ⊽ identity. (Contributed by Remi, 25-Oct-2023.) |
Ref | Expression |
---|---|
falnortru | ⊢ ((⊥ ⊽ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norcom 1524 | . 2 ⊢ ((⊥ ⊽ ⊤) ↔ (⊤ ⊽ ⊥)) | |
2 | trunorfal 1590 | . 2 ⊢ ((⊤ ⊽ ⊥) ↔ ⊥) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((⊥ ⊽ ⊤) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊽ wnor 1522 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-nor 1523 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |