MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnorfal Structured version   Visualization version   GIF version

Theorem falnorfal 1589
Description: A identity. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 17-Dec-2023.)
Assertion
Ref Expression
falnorfal ((⊥ ⊥) ↔ ⊤)

Proof of Theorem falnorfal
StepHypRef Expression
1 df-nor 1526 . . 3 ((⊥ ⊥) ↔ ¬ (⊥ ∨ ⊥))
2 falorfal 1577 . . 3 ((⊥ ∨ ⊥) ↔ ⊥)
31, 2xchbinx 334 . 2 ((⊥ ⊥) ↔ ¬ ⊥)
4 notfal 1565 . 2 (¬ ⊥ ↔ ⊤)
53, 4bitri 275 1 ((⊥ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 846   wnor 1525  wtru 1538  wfal 1549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-nor 1526  df-tru 1540  df-fal 1550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator