MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunorfal Structured version   Visualization version   GIF version

Theorem trunorfal 1590
Description: A identity. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 17-Dec-2023.)
Assertion
Ref Expression
trunorfal ((⊤ ⊥) ↔ ⊥)

Proof of Theorem trunorfal
StepHypRef Expression
1 df-nor 1528 . . 3 ((⊤ ⊥) ↔ ¬ (⊤ ∨ ⊥))
2 truorfal 1578 . . 3 ((⊤ ∨ ⊥) ↔ ⊤)
31, 2xchbinx 333 . 2 ((⊤ ⊥) ↔ ¬ ⊤)
4 df-fal 1553 . 2 (⊥ ↔ ¬ ⊤)
53, 4bitr4i 277 1 ((⊤ ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   wnor 1527  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-nor 1528  df-tru 1543  df-fal 1553
This theorem is referenced by:  falnortru  1591
  Copyright terms: Public domain W3C validator