|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > norcom | Structured version Visualization version GIF version | ||
| Description: The connector ⊽ is commutative. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 23-Apr-2024.) | 
| Ref | Expression | 
|---|---|
| norcom | ⊢ ((𝜑 ⊽ 𝜓) ↔ (𝜓 ⊽ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor 1529 | . . 3 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
| 2 | orcom 871 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜓 ∨ 𝜑)) | 
| 4 | df-nor 1529 | . 2 ⊢ ((𝜓 ⊽ 𝜑) ↔ ¬ (𝜓 ∨ 𝜑)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝜑 ⊽ 𝜓) ↔ (𝜓 ⊽ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 848 ⊽ wnor 1528 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-nor 1529 | 
| This theorem is referenced by: norass 1537 falnortru 1591 | 
| Copyright terms: Public domain | W3C validator |