|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-nor | Structured version Visualization version GIF version | ||
| Description: Define joint denial ("not-or" or "nor"). After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊽ ⊤) ↔ ⊥) (trunortru 1589), ((⊤ ⊽ ⊥) ↔ ⊥) (trunorfal 1590), ((⊥ ⊽ ⊤) ↔ ⊥) (falnortru 1591), and ((⊥ ⊽ ⊥) ↔ ⊤) (falnorfal 1592). Contrast with ∧ (df-an 396), ∨ (df-or 849), → (wi 4), ⊼ (df-nan 1492), and ⊻ (df-xor 1512). (Contributed by Remi, 25-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| df-nor | ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wnor 1528 | . 2 wff (𝜑 ⊽ 𝜓) | 
| 4 | 1, 2 | wo 848 | . . 3 wff (𝜑 ∨ 𝜓) | 
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∨ 𝜓) | 
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: norcom 1530 nornot 1531 noran 1532 noror 1533 norasslem1 1534 norass 1537 trunortru 1589 trunorfal 1590 falnorfal 1592 wl-df3maxtru1 37493 | 
| Copyright terms: Public domain | W3C validator |