MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nor Structured version   Visualization version   GIF version

Definition df-nor 1526
Description: Define joint denial ("not-or" or "nor"). After we define the constant true (df-tru 1541) and the constant false (df-fal 1551), we will be able to prove these truth table values: ((⊤ ⊤) ↔ ⊥) (trunortru 1587), ((⊤ ⊥) ↔ ⊥) (trunorfal 1588), ((⊥ ⊤) ↔ ⊥) (falnortru 1589), and ((⊥ ⊥) ↔ ⊤) (falnorfal 1590). Contrast with (df-an 397), (df-or 845), (wi 4), (df-nan 1487), and (df-xor 1507). (Contributed by Remi, 25-Oct-2023.)
Assertion
Ref Expression
df-nor ((𝜑 𝜓) ↔ ¬ (𝜑𝜓))

Detailed syntax breakdown of Definition df-nor
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wnor 1525 . 2 wff (𝜑 𝜓)
41, 2wo 844 . . 3 wff (𝜑𝜓)
54wn 3 . 2 wff ¬ (𝜑𝜓)
63, 5wb 205 1 wff ((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  norcom  1527  norcomOLD  1528  nornot  1529  noran  1530  noror  1531  norasslem1  1532  norass  1535  trunortru  1587  trunorfal  1588  falnorfal  1590  wl-df3maxtru1  35683
  Copyright terms: Public domain W3C validator