Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nor | Structured version Visualization version GIF version |
Description: Define joint denial ("not-or" or "nor"). After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊽ ⊤) ↔ ⊥) (trunortru 1588), ((⊤ ⊽ ⊥) ↔ ⊥) (trunorfal 1590), ((⊥ ⊽ ⊤) ↔ ⊥) (falnortru 1592), and ((⊥ ⊽ ⊥) ↔ ⊤) (falnorfal 1593). Contrast with ∧ (df-an 396), ∨ (df-or 844), → (wi 4), ⊼ (df-nan 1484), and ⊻ (df-xor 1504). (Contributed by Remi, 25-Oct-2023.) |
Ref | Expression |
---|---|
df-nor | ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnor 1522 | . 2 wff (𝜑 ⊽ 𝜓) |
4 | 1, 2 | wo 843 | . . 3 wff (𝜑 ∨ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∨ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: norcom 1524 norcomOLD 1525 nornot 1526 nornotOLD 1527 noran 1528 noranOLD 1529 noror 1530 nororOLD 1531 norasslem1 1532 norass 1535 norassOLD 1536 trunortru 1588 trunortruOLD 1589 trunorfal 1590 trunorfalOLD 1591 falnorfal 1593 falnorfalOLD 1594 wl-df3maxtru1 35596 |
Copyright terms: Public domain | W3C validator |