| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nor | Structured version Visualization version GIF version | ||
| Description: Define joint denial ("not-or" or "nor"). After we define the constant true ⊤ (df-tru 1544) and the constant false ⊥ (df-fal 1554), we will be able to prove these truth table values: ((⊤ ⊽ ⊤) ↔ ⊥) (trunortru 1590), ((⊤ ⊽ ⊥) ↔ ⊥) (trunorfal 1591), ((⊥ ⊽ ⊤) ↔ ⊥) (falnortru 1592), and ((⊥ ⊽ ⊥) ↔ ⊤) (falnorfal 1593). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), ⊼ (df-nan 1493), and ⊻ (df-xor 1513). (Contributed by Remi, 25-Oct-2023.) |
| Ref | Expression |
|---|---|
| df-nor | ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wnor 1529 | . 2 wff (𝜑 ⊽ 𝜓) |
| 4 | 1, 2 | wo 847 | . . 3 wff (𝜑 ∨ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∨ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: norcom 1531 nornot 1532 noran 1533 noror 1534 norasslem1 1535 norass 1538 trunortru 1590 trunorfal 1591 falnorfal 1593 wl-df3maxtru1 37536 |
| Copyright terms: Public domain | W3C validator |