MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falorfal Structured version   Visualization version   GIF version

Theorem falorfal 1576
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal ((⊥ ∨ ⊥) ↔ ⊥)

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 901 1 ((⊥ ∨ ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wo 843  wfal 1548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-or 844
This theorem is referenced by:  falnorfal  1590  falnorfalOLD  1591
  Copyright terms: Public domain W3C validator