Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falortru | Structured version Visualization version GIF version |
Description: A ∨ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
falortru | ⊢ ((⊥ ∨ ⊤) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1545 | . . 3 ⊢ ⊤ | |
2 | 1 | olci 862 | . 2 ⊢ (⊥ ∨ ⊤) |
3 | 2 | bitru 1550 | 1 ⊢ ((⊥ ∨ ⊤) ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ⊤wtru 1542 ⊥wfal 1553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-tru 1544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |