Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege20 Structured version   Visualization version   GIF version

Theorem frege20 41325
Description: A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege20 ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜃𝜏) → (𝜑 → (𝜓 → (𝜒𝜏)))))

Proof of Theorem frege20
StepHypRef Expression
1 frege19 41321 . 2 ((𝜓 → (𝜒𝜃)) → ((𝜃𝜏) → (𝜓 → (𝜒𝜏))))
2 frege18 41315 . 2 (((𝜓 → (𝜒𝜃)) → ((𝜃𝜏) → (𝜓 → (𝜒𝜏)))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜃𝜏) → (𝜑 → (𝜓 → (𝜒𝜏))))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜃𝜏) → (𝜑 → (𝜓 → (𝜒𝜏)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege121  41481  frege125  41485
  Copyright terms: Public domain W3C validator