Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege121 Structured version   Visualization version   GIF version

Theorem frege121 43190
Description: Lemma for frege122 43191. Proposition 121 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
frege120.a 𝐴𝑊
Assertion
Ref Expression
frege121 ((𝐴 = 𝑋𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝑋((t+‘𝑅) ∪ I )𝐴))))

Proof of Theorem frege121
StepHypRef Expression
1 frege116.x . . 3 𝑋𝑈
2 frege118.y . . 3 𝑌𝑉
3 frege120.a . . 3 𝐴𝑊
41, 2, 3frege120 43189 . 2 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))
5 frege20 43034 . 2 ((Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋))) → ((𝐴 = 𝑋𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝑋((t+‘𝑅) ∪ I )𝐴)))))
64, 5ax-mp 5 1 ((𝐴 = 𝑋𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝑋((t+‘𝑅) ∪ I )𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3938   class class class wbr 5138   I cid 5563  ccnv 5665  Fun wfun 6527  cfv 6533  t+ctcl 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-frege1 42996  ax-frege2 42997  ax-frege8 43015  ax-frege52a 43063  ax-frege58b 43107
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-fun 6535
This theorem is referenced by:  frege122  43191
  Copyright terms: Public domain W3C validator