|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege21 | Structured version Visualization version GIF version | ||
| Description: Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege21 | ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege9 43830 | . 2 ⊢ ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → (𝜑 → 𝜓))) | |
| 2 | frege19 43842 | . 2 ⊢ (((𝜑 → 𝜃) → ((𝜃 → 𝜓) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 | 
| This theorem is referenced by: frege44 43866 frege47 43869 | 
| Copyright terms: Public domain | W3C validator |