| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege21 | Structured version Visualization version GIF version | ||
| Description: Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege21 | ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege9 43803 | . 2 ⊢ ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → (𝜑 → 𝜓))) | |
| 2 | frege19 43815 | . 2 ⊢ (((𝜑 → 𝜃) → ((𝜃 → 𝜓) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 |
| This theorem is referenced by: frege44 43839 frege47 43842 |
| Copyright terms: Public domain | W3C validator |