Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege21 Structured version   Visualization version   GIF version

Theorem frege21 41324
Description: Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege21 (((𝜑𝜓) → 𝜒) → ((𝜑𝜃) → ((𝜃𝜓) → 𝜒)))

Proof of Theorem frege21
StepHypRef Expression
1 frege9 41309 . 2 ((𝜑𝜃) → ((𝜃𝜓) → (𝜑𝜓)))
2 frege19 41321 . 2 (((𝜑𝜃) → ((𝜃𝜓) → (𝜑𝜓))) → (((𝜑𝜓) → 𝜒) → ((𝜑𝜃) → ((𝜃𝜓) → 𝜒))))
31, 2ax-mp 5 1 (((𝜑𝜓) → 𝜒) → ((𝜑𝜃) → ((𝜃𝜓) → 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege44  41345  frege47  41348
  Copyright terms: Public domain W3C validator