Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a2d | Structured version Visualization version GIF version |
Description: Deduction distributing an embedded antecedent. Deduction form of ax-2 7. (Contributed by NM, 23-Jun-1994.) |
Ref | Expression |
---|---|
a2d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
a2d | ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | ax-2 7 | . 2 ⊢ ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
Copyright terms: Public domain | W3C validator |