Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege44 | Structured version Visualization version GIF version |
Description: Similar to a commuted pm2.62 898. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege44 | ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege43 40914 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | |
2 | frege21 40894 | . 2 ⊢ (((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 40857 ax-frege2 40858 ax-frege8 40876 ax-frege28 40897 ax-frege31 40901 ax-frege41 40912 |
This theorem is referenced by: frege45 40916 |
Copyright terms: Public domain | W3C validator |