| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege44 | Structured version Visualization version GIF version | ||
| Description: Similar to a commuted pm2.62 899. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege44 | ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege43 43805 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | |
| 2 | frege21 43785 | . 2 ⊢ (((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege28 43788 ax-frege31 43792 ax-frege41 43803 |
| This theorem is referenced by: frege45 43807 |
| Copyright terms: Public domain | W3C validator |