| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege45 | Structured version Visualization version GIF version | ||
| Description: Deduce pm2.6 191 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege45 | ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege44 43866 | . 2 ⊢ ((¬ 𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | frege5 43818 | . 2 ⊢ (((¬ 𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) → (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege28 43848 ax-frege31 43852 ax-frege41 43863 |
| This theorem is referenced by: frege46 43868 |
| Copyright terms: Public domain | W3C validator |