Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege45 | Structured version Visualization version GIF version |
Description: Deduce pm2.6 190 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege45 | ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege44 41456 | . 2 ⊢ ((¬ 𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) | |
2 | frege5 41408 | . 2 ⊢ (((¬ 𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) → (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41398 ax-frege2 41399 ax-frege8 41417 ax-frege28 41438 ax-frege31 41442 ax-frege41 41453 |
This theorem is referenced by: frege46 41458 |
Copyright terms: Public domain | W3C validator |