Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege51 Structured version   Visualization version   GIF version

Theorem frege51 41140
Description: Compare with jaod 859. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege51 ((𝜑 → (𝜓𝜒)) → ((𝜃𝜒) → (𝜑 → ((¬ 𝜓𝜃) → 𝜒))))

Proof of Theorem frege51
StepHypRef Expression
1 frege50 41139 . 2 ((𝜓𝜒) → ((𝜃𝜒) → ((¬ 𝜓𝜃) → 𝜒)))
2 frege18 41103 . 2 (((𝜓𝜒) → ((𝜃𝜒) → ((¬ 𝜓𝜃) → 𝜒))) → ((𝜑 → (𝜓𝜒)) → ((𝜃𝜒) → (𝜑 → ((¬ 𝜓𝜃) → 𝜒)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → ((𝜃𝜒) → (𝜑 → ((¬ 𝜓𝜃) → 𝜒))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41075  ax-frege2 41076  ax-frege8 41094  ax-frege28 41115  ax-frege31 41119  ax-frege41 41130
This theorem is referenced by:  frege128  41276
  Copyright terms: Public domain W3C validator