![]() |
Metamath
Proof Explorer Theorem List (p. 430 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oddcomabszz 42901* | An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐶 = -𝐵) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = -𝑦 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝐸) & ⊢ (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹) | ||
Theorem | 2nn0ind 42902* | Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝑦 ∈ ℕ → ((𝜃 ∧ 𝜏) → 𝜂)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 − 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜌)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜌) | ||
Theorem | zindbi 42903* | Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (𝑦 ∈ ℤ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℤ → (𝜃 ↔ 𝜏)) | ||
Theorem | rmxypos 42904 | For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))) | ||
Theorem | ltrmynn0 42905 | The Y-sequence is strictly monotonic on ℕ0. Strengthened by ltrmy 42909. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
Theorem | ltrmxnn0 42906 | The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) | ||
Theorem | lermxnn0 42907 | The X-sequence is monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝐴 Xrm 𝑀) ≤ (𝐴 Xrm 𝑁))) | ||
Theorem | rmxnn 42908 | The X-sequence is defined to range over ℕ0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) | ||
Theorem | ltrmy 42909 | The Y-sequence is strictly monotonic over ℤ. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
Theorem | rmyeq0 42910 | Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) | ||
Theorem | rmyeq 42911 | Y is one-to-one. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑁))) | ||
Theorem | lermy 42912 | Y is monotonic (non-strict). (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) | ||
Theorem | rmynn 42913 | Yrm is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ) | ||
Theorem | rmynn0 42914 | Yrm is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) | ||
Theorem | rmyabs 42915 | Yrm commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵))) | ||
Theorem | jm2.24nn 42916 | X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to ℕ. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
Theorem | jm2.17a 42917 | First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))) | ||
Theorem | jm2.17b 42918 | Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) | ||
Theorem | jm2.17c 42919 | Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1))) | ||
Theorem | jm2.24 42920 | Lemma 2.24 of [JonesMatijasevic] p. 697 extended to ℤ. Could be eliminated with a more careful proof of jm2.26lem3 42958. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
Theorem | rmygeid 42921 | Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) | ||
Theorem | congtr 42922 | A wff of the form 𝐴 ∥ (𝐵 − 𝐶) is interpreted as a congruential equation. This is similar to (𝐵 mod 𝐴) = (𝐶 mod 𝐴), but is defined such that behavior is regular for zero and negative values of 𝐴. To use this concept effectively, we need to show that congruential equations behave similarly to normal equations; first a transitivity law. Idea for the future: If there was a congruential equation symbol, it could incorporate type constraints, so that most of these would not need them. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) | ||
Theorem | congadd 42923 | If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸))) | ||
Theorem | congmul 42924 | If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸))) | ||
Theorem | congsym 42925 | Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | ||
Theorem | congneg 42926 | If two integers are congruent mod 𝐴, so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (-𝐵 − -𝐶)) | ||
Theorem | congsub 42927 | If two pairs of numbers are componentwise congruent, so are their differences. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 − 𝐷) − (𝐶 − 𝐸))) | ||
Theorem | congid 42928 | Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐵 − 𝐵)) | ||
Theorem | mzpcong 42929* | Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘 ∈ 𝑉 𝑁 ∥ ((𝑋‘𝑘) − (𝑌‘𝑘)))) → 𝑁 ∥ ((𝐹‘𝑋) − (𝐹‘𝑌))) | ||
Theorem | congrep 42930* | Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) | ||
Theorem | congabseq 42931 | If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < 𝐴 ↔ 𝐵 = 𝐶)) | ||
Theorem | acongid 42932 |
A wff like that in this theorem will be known as an "alternating
congruence". A special symbol might be considered if more uses come
up.
They have many of the same properties as normal congruences, starting with
reflexivity.
JonesMatijasevic uses "a ≡ ± b (mod c)" for this construction. The disjunction of divisibility constraints seems to adequately capture the concept, but it's rather verbose and somewhat inelegant. Use of an explicit equivalence relation might also work. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐵 − 𝐵) ∨ 𝐴 ∥ (𝐵 − -𝐵))) | ||
Theorem | acongsym 42933 | Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) | ||
Theorem | acongneg2 42934 | Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∨ 𝐴 ∥ (𝐵 − --𝐶))) → (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) | ||
Theorem | acongtr 42935 | Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) | ||
Theorem | acongeq12d 42936 | Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) | ||
Theorem | acongrep 42937* | Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎 − 𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁))) | ||
Theorem | fzmaxdif 42938 | Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) | ||
Theorem | fzneg 42939 | Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) | ||
Theorem | acongeq 42940 | Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 42959. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))) | ||
Theorem | dvdsacongtr 42941 | Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷 ∥ 𝐴 ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵 − 𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))) | ||
Theorem | coprmdvdsb 42942 | Multiplication by a coprime number does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝐾 gcd 𝑀) = 1)) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ (𝑀 · 𝑁))) | ||
Theorem | modabsdifz 42943 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) | ||
Theorem | dvdsabsmod0 42944 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) | ||
Theorem | jm2.18 42945 | Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) | ||
Theorem | jm2.19lem1 42946 | Lemma for jm2.19 42950. X and Y values are coprime. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) | ||
Theorem | jm2.19lem2 42947 | Lemma for jm2.19 42950. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) | ||
Theorem | jm2.19lem3 42948 | Lemma for jm2.19 42950. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
Theorem | jm2.19lem4 42949 | Lemma for jm2.19 42950. Extend to ZZ by symmetry. TODO: use zindbi 42903. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
Theorem | jm2.19 42950 | Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) | ||
Theorem | jm2.21 42951 | Lemma for jm2.20nn 42954. Express X and Y values as a binomial. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽)) | ||
Theorem | jm2.22 42952* | Lemma for jm2.20nn 42954. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽 − 𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) | ||
Theorem | jm2.23 42953 | Lemma for jm2.20nn 42954. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))))) | ||
Theorem | jm2.20nn 42954 | Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)) | ||
Theorem | jm2.25lem1 42955 | Lemma for jm2.26 42959. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷 − 𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) | ||
Theorem | jm2.25 42956 | Lemma for jm2.26 42959. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) | ||
Theorem | jm2.26a 42957 | Lemma for jm2.26 42959. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) | ||
Theorem | jm2.26lem3 42958 | Lemma for jm2.26 42959. Use acongrep 42937 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀) | ||
Theorem | jm2.26 42959 | Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))) | ||
Theorem | jm2.15nn0 42960 | Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))) | ||
Theorem | jm2.16nn0 42961 | Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 42960 if Yrm is redefined as described in rmyluc 42894. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)) | ||
Theorem | jm2.27a 42962 | Lemma for jm2.27 42965. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐷 = (𝐴 Xrm 𝑃)) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) & ⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝐼 = (𝐺 Xrm 𝑅)) & ⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
Theorem | jm2.27b 42963 | Lemma for jm2.27 42965. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
Theorem | jm2.27c 42964 | Lemma for jm2.27 42965. Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) & ⊢ 𝐷 = (𝐴 Xrm 𝐵) & ⊢ 𝑄 = (𝐵 · (𝐴 Yrm 𝐵)) & ⊢ 𝐸 = (𝐴 Yrm (2 · 𝑄)) & ⊢ 𝐹 = (𝐴 Xrm (2 · 𝑄)) & ⊢ 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) & ⊢ 𝐻 = (𝐺 Yrm 𝐵) & ⊢ 𝐼 = (𝐺 Xrm 𝐵) & ⊢ 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1) ⇒ ⊢ (𝜑 → (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0 ∧ 𝐻 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ≥‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻 − 𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻 − 𝐵) ∧ 𝐵 ≤ 𝐶)))))) | ||
Theorem | jm2.27 42965* | Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 42962 and jm2.27c 42964. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ∃𝑔 ∈ ℕ0 ∃ℎ ∈ ℕ0 ∃𝑖 ∈ ℕ0 ∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ≥‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (ℎ↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (ℎ − 𝐶)) ∧ ((2 · 𝐶) ∥ (ℎ − 𝐵) ∧ 𝐵 ≤ 𝐶))))) | ||
Theorem | jm2.27dlem1 42966* | Lemma for rmydioph 42971. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ (1...𝐵) ⇒ ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) | ||
Theorem | jm2.27dlem2 42967 | Lemma for rmydioph 42971. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ (1...𝐵) & ⊢ 𝐶 = (𝐵 + 1) & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐶) | ||
Theorem | jm2.27dlem3 42968 | Lemma for rmydioph 42971. Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐴) | ||
Theorem | jm2.27dlem4 42969 | Lemma for rmydioph 42971. Infer ℕ-hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 = (𝐴 + 1) ⇒ ⊢ 𝐵 ∈ ℕ | ||
Theorem | jm2.27dlem5 42970 | Lemma for rmydioph 42971. Used with sselii 4005 to infer membership of midpoints of range; jm2.27dlem2 42967 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ 𝐵 = (𝐴 + 1) & ⊢ (1...𝐵) ⊆ (1...𝐶) ⇒ ⊢ (1...𝐴) ⊆ (1...𝐶) | ||
Theorem | rmydioph 42971 | jm2.27 42965 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | rmxdiophlem 42972* | X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) | ||
Theorem | rmxdioph 42973 | X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | jm3.1lem1 42974 | Lemma for jm3.1 42977. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) | ||
Theorem | jm3.1lem2 42975 | Lemma for jm3.1 42977. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) | ||
Theorem | jm3.1lem3 42976 | Lemma for jm3.1 42977. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) | ||
Theorem | jm3.1 42977 | Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) | ||
Theorem | expdiophlem1 42978* | Lemma for expdioph 42980. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴↑𝐵)) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑 − 𝐴) · 𝑒)) − 𝐶)))))))) | ||
Theorem | expdiophlem2 42979 | Lemma for expdioph 42980. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3) | ||
Theorem | expdioph 42980 | The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3) | ||
Theorem | setindtr 42981* | Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9803; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → 𝐵 ∈ 𝐴)) | ||
Theorem | setindtrs 42982* | Set induction scheme without Infinity. See comments at setindtr 42981. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝜒) | ||
Theorem | dford3lem1 42983* | Lemma for dford3 42985. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) | ||
Theorem | dford3lem2 42984* | Lemma for dford3 42985. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ ((Tr 𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr 𝑦) → 𝑥 ∈ On) | ||
Theorem | dford3 42985* | Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of [Schloeder] p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) | ||
Theorem | dford4 42986* | dford3 42985 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (Ord 𝑁 ↔ ∀𝑎∀𝑏∀𝑐((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑎) → (𝑏 ∈ 𝑁 ∧ (𝑐 ∈ 𝑏 → 𝑐 ∈ 𝑎)))) | ||
Theorem | wopprc 42987 | Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1o ∈ {{{𝐴}, ∅}, {{𝐵}}}) | ||
Theorem | rpnnen3lem 42988* | Lemma for rpnnen3 42989. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | ||
Theorem | rpnnen3 42989 | Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ ℝ ≼ 𝒫 ℚ | ||
Theorem | axac10 42990 | Characterization of choice similar to dffin1-5 10457. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
⊢ ( ≈ “ On) = V | ||
Theorem | harinf 42991 | The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) | ||
Theorem | wdom2d2 42992* | Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) | ||
Theorem | ttac 42993 | Tarski's theorem about choice: infxpidm 10631 is equivalent to ax-ac 10528. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.) |
⊢ (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐)) | ||
Theorem | pw2f1ocnv 42994* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9145, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))))) | ||
Theorem | pw2f1o2 42995* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9145, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) | ||
Theorem | pw2f1o2val 42996* | Function value of the pw2f1o2 42995 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) | ||
Theorem | pw2f1o2val2 42997* | Membership in a mapped set under the pw2f1o2 42995 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) | ||
Theorem | limsuc2 42998 | Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
Theorem | wepwsolem 42999* | Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} & ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝐹 = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) ⇒ ⊢ (𝐴 ∈ V → 𝐹 Isom 𝑈, 𝑇 ((2o ↑m 𝐴), 𝒫 𝐴)) | ||
Theorem | wepwso 43000* | A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |