| Metamath
Proof Explorer Theorem List (p. 430 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rmspecsqrtnq 42901 | The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | ||
| Theorem | rmspecnonsq 42902 | The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | ||
| Theorem | qirropth 42903 | This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | ||
| Theorem | rmspecfund 42904 | The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1)))) | ||
| Theorem | rmxyelqirr 42905* | The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by SN, 23-Dec-2024.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
| Theorem | rmxyelqirrOLD 42906* | Obsolete version of rmxyelqirr 42905 as of 23-Dec-2024. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
| Theorem | rmxypairf1o 42907* | The function used to extract rational and irrational parts in df-rmx 42897 and df-rmy 42898 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) | ||
| Theorem | rmxyelxp 42908* | Lemma for frmx 42909 and frmy 42910. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) ∈ (ℕ0 × ℤ)) | ||
| Theorem | frmx 42909 | The X sequence is a nonnegative integer. See rmxnn 42947 for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | ||
| Theorem | frmy 42910 | The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | ||
| Theorem | rmxyval 42911 | Main definition of the X and Y sequences. Compare definition 2.3 of [JonesMatijasevic] p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) | ||
| Theorem | rmspecpos 42912 | The discriminant used to define the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | ||
| Theorem | rmxycomplete 42913* | The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)))) | ||
| Theorem | rmxynorm 42914 | The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1) | ||
| Theorem | rmbaserp 42915 | The base of exponentiation for the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | ||
| Theorem | rmxyneg 42916 | Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain ℕ0 or ℤ; we use ℤ consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))) | ||
| Theorem | rmxyadd 42917 | Addition formula for X and Y sequences. See rmxadd 42923 and rmyadd 42927 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
| Theorem | rmxy1 42918 | Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)) | ||
| Theorem | rmxy0 42919 | Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) | ||
| Theorem | rmxneg 42920 | Negation law (even function) for the X sequence. The method of proof used for the previous four theorems rmxyneg 42916, rmxyadd 42917, rmxy0 42919, and rmxy1 42918 via qirropth 42903 results in two theorems at once, but typical use requires only one, so this group of theorems serves to separate the cases. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁)) | ||
| Theorem | rmx0 42921 | Value of X sequence at 0. Part 1 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) = 1) | ||
| Theorem | rmx1 42922 | Value of X sequence at 1. Part 2 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | ||
| Theorem | rmxadd 42923 | Addition formula for X sequence. Equation 2.7 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))) | ||
| Theorem | rmyneg 42924 | Negation formula for Y sequence (odd function). (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)) | ||
| Theorem | rmy0 42925 | Value of Y sequence at 0. Part 1 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) = 0) | ||
| Theorem | rmy1 42926 | Value of Y sequence at 1. Part 2 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | ||
| Theorem | rmyadd 42927 | Addition formula for Y sequence. Equation 2.8 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmxp1 42928 | Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmyp1 42929 | Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxm1 42930 | Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmym1 42931 | Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxluc 42932 | The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) | ||
| Theorem | rmyluc 42933 | The Y sequence is a Lucas sequence, definable via this second-order recurrence with rmy0 42925 and rmy1 42926. Part 3 of equation 2.12 of [JonesMatijasevic] p. 695. JonesMatijasevic uses this theorem to redefine the X and Y sequences to have domain (ℤ × ℤ), which simplifies some later theorems. It may shorten the derivation to use this as our initial definition. Incidentally, the X sequence satisfies the exact same recurrence. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) | ||
| Theorem | rmyluc2 42934 | Lucas sequence property of Y with better output ordering. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1)))) | ||
| Theorem | rmxdbl 42935 | "Double-angle formula" for X-values. Equation 2.13 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1)) | ||
| Theorem | rmydbl 42936 | "Double-angle formula" for Y-values. Equation 2.14 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁))) | ||
| Theorem | monotuz 42937* | A function defined on an upper set of integers which increases at every adjacent pair is globally strictly monotonic by induction. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) & ⊢ 𝐻 = (ℤ≥‘𝐼) & ⊢ (𝑥 = (𝑦 + 1) → 𝐶 = 𝐺) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐹) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ 𝐷 < 𝐸)) | ||
| Theorem | monotoddzzfi 42938* | A function which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) | ||
| Theorem | monotoddzz 42939* | A function (given implicitly) which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → 𝐸 < 𝐹)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐺 = -𝐹) & ⊢ (𝑥 = 𝐴 → 𝐸 = 𝐶) & ⊢ (𝑥 = 𝐵 → 𝐸 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) & ⊢ (𝑥 = -𝑦 → 𝐸 = 𝐺) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐶 < 𝐷)) | ||
| Theorem | oddcomabszz 42940* | An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐶 = -𝐵) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = -𝑦 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝐸) & ⊢ (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹) | ||
| Theorem | 2nn0ind 42941* | Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝑦 ∈ ℕ → ((𝜃 ∧ 𝜏) → 𝜂)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 − 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜌)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜌) | ||
| Theorem | zindbi 42942* | Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (𝑦 ∈ ℤ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℤ → (𝜃 ↔ 𝜏)) | ||
| Theorem | rmxypos 42943 | For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))) | ||
| Theorem | ltrmynn0 42944 | The Y-sequence is strictly monotonic on ℕ0. Strengthened by ltrmy 42948. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
| Theorem | ltrmxnn0 42945 | The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) | ||
| Theorem | lermxnn0 42946 | The X-sequence is monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝐴 Xrm 𝑀) ≤ (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxnn 42947 | The X-sequence is defined to range over ℕ0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) | ||
| Theorem | ltrmy 42948 | The Y-sequence is strictly monotonic over ℤ. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
| Theorem | rmyeq0 42949 | Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) | ||
| Theorem | rmyeq 42950 | Y is one-to-one. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑁))) | ||
| Theorem | lermy 42951 | Y is monotonic (non-strict). (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) | ||
| Theorem | rmynn 42952 | Yrm is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ) | ||
| Theorem | rmynn0 42953 | Yrm is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) | ||
| Theorem | rmyabs 42954 | Yrm commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵))) | ||
| Theorem | jm2.24nn 42955 | X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to ℕ. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
| Theorem | jm2.17a 42956 | First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))) | ||
| Theorem | jm2.17b 42957 | Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) | ||
| Theorem | jm2.17c 42958 | Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1))) | ||
| Theorem | jm2.24 42959 | Lemma 2.24 of [JonesMatijasevic] p. 697 extended to ℤ. Could be eliminated with a more careful proof of jm2.26lem3 42997. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
| Theorem | rmygeid 42960 | Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) | ||
| Theorem | congtr 42961 | A wff of the form 𝐴 ∥ (𝐵 − 𝐶) is interpreted as a congruential equation. This is similar to (𝐵 mod 𝐴) = (𝐶 mod 𝐴), but is defined such that behavior is regular for zero and negative values of 𝐴. To use this concept effectively, we need to show that congruential equations behave similarly to normal equations; first a transitivity law. Idea for the future: If there was a congruential equation symbol, it could incorporate type constraints, so that most of these would not need them. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) | ||
| Theorem | congadd 42962 | If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸))) | ||
| Theorem | congmul 42963 | If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸))) | ||
| Theorem | congsym 42964 | Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | ||
| Theorem | congneg 42965 | If two integers are congruent mod 𝐴, so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (-𝐵 − -𝐶)) | ||
| Theorem | congsub 42966 | If two pairs of numbers are componentwise congruent, so are their differences. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 − 𝐷) − (𝐶 − 𝐸))) | ||
| Theorem | congid 42967 | Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐵 − 𝐵)) | ||
| Theorem | mzpcong 42968* | Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘 ∈ 𝑉 𝑁 ∥ ((𝑋‘𝑘) − (𝑌‘𝑘)))) → 𝑁 ∥ ((𝐹‘𝑋) − (𝐹‘𝑌))) | ||
| Theorem | congrep 42969* | Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) | ||
| Theorem | congabseq 42970 | If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < 𝐴 ↔ 𝐵 = 𝐶)) | ||
| Theorem | acongid 42971 |
A wff like that in this theorem will be known as an "alternating
congruence". A special symbol might be considered if more uses come
up.
They have many of the same properties as normal congruences, starting with
reflexivity.
JonesMatijasevic uses "a ≡ ± b (mod c)" for this construction. The disjunction of divisibility constraints seems to adequately capture the concept, but it's rather verbose and somewhat inelegant. Use of an explicit equivalence relation might also work. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐵 − 𝐵) ∨ 𝐴 ∥ (𝐵 − -𝐵))) | ||
| Theorem | acongsym 42972 | Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) | ||
| Theorem | acongneg2 42973 | Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∨ 𝐴 ∥ (𝐵 − --𝐶))) → (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) | ||
| Theorem | acongtr 42974 | Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) | ||
| Theorem | acongeq12d 42975 | Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) | ||
| Theorem | acongrep 42976* | Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎 − 𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁))) | ||
| Theorem | fzmaxdif 42977 | Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) | ||
| Theorem | fzneg 42978 | Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) | ||
| Theorem | acongeq 42979 | Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 42998. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))) | ||
| Theorem | dvdsacongtr 42980 | Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷 ∥ 𝐴 ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵 − 𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))) | ||
| Theorem | coprmdvdsb 42981 | Multiplication by a coprime number does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝐾 gcd 𝑀) = 1)) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | modabsdifz 42982 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) | ||
| Theorem | dvdsabsmod0 42983 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) | ||
| Theorem | jm2.18 42984 | Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) | ||
| Theorem | jm2.19lem1 42985 | Lemma for jm2.19 42989. X and Y values are coprime. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) | ||
| Theorem | jm2.19lem2 42986 | Lemma for jm2.19 42989. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) | ||
| Theorem | jm2.19lem3 42987 | Lemma for jm2.19 42989. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
| Theorem | jm2.19lem4 42988 | Lemma for jm2.19 42989. Extend to ZZ by symmetry. TODO: use zindbi 42942. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
| Theorem | jm2.19 42989 | Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) | ||
| Theorem | jm2.21 42990 | Lemma for jm2.20nn 42993. Express X and Y values as a binomial. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽)) | ||
| Theorem | jm2.22 42991* | Lemma for jm2.20nn 42993. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽 − 𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) | ||
| Theorem | jm2.23 42992 | Lemma for jm2.20nn 42993. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))))) | ||
| Theorem | jm2.20nn 42993 | Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)) | ||
| Theorem | jm2.25lem1 42994 | Lemma for jm2.26 42998. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷 − 𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) | ||
| Theorem | jm2.25 42995 | Lemma for jm2.26 42998. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) | ||
| Theorem | jm2.26a 42996 | Lemma for jm2.26 42998. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) | ||
| Theorem | jm2.26lem3 42997 | Lemma for jm2.26 42998. Use acongrep 42976 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀) | ||
| Theorem | jm2.26 42998 | Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))) | ||
| Theorem | jm2.15nn0 42999 | Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))) | ||
| Theorem | jm2.16nn0 43000 | Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 42999 if Yrm is redefined as described in rmyluc 42933. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |