| Metamath
Proof Explorer Theorem List (p. 430 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rmy1 42901 | Value of Y sequence at 1. Part 2 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | ||
| Theorem | rmyadd 42902 | Addition formula for Y sequence. Equation 2.8 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmxp1 42903 | Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmyp1 42904 | Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxm1 42905 | Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | ||
| Theorem | rmym1 42906 | Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxluc 42907 | The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) | ||
| Theorem | rmyluc 42908 | The Y sequence is a Lucas sequence, definable via this second-order recurrence with rmy0 42900 and rmy1 42901. Part 3 of equation 2.12 of [JonesMatijasevic] p. 695. JonesMatijasevic uses this theorem to redefine the X and Y sequences to have domain (ℤ × ℤ), which simplifies some later theorems. It may shorten the derivation to use this as our initial definition. Incidentally, the X sequence satisfies the exact same recurrence. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) | ||
| Theorem | rmyluc2 42909 | Lucas sequence property of Y with better output ordering. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1)))) | ||
| Theorem | rmxdbl 42910 | "Double-angle formula" for X-values. Equation 2.13 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1)) | ||
| Theorem | rmydbl 42911 | "Double-angle formula" for Y-values. Equation 2.14 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁))) | ||
| Theorem | monotuz 42912* | A function defined on an upper set of integers which increases at every adjacent pair is globally strictly monotonic by induction. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐻) → 𝐹 < 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝐶 ∈ ℝ) & ⊢ 𝐻 = (ℤ≥‘𝐼) & ⊢ (𝑥 = (𝑦 + 1) → 𝐶 = 𝐺) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐹) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻)) → (𝐴 < 𝐵 ↔ 𝐷 < 𝐸)) | ||
| Theorem | monotoddzzfi 42913* | A function which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) | ||
| Theorem | monotoddzz 42914* | A function (given implicitly) which is odd and monotonic on ℕ0 is monotonic on ℤ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → 𝐸 < 𝐹)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐺 = -𝐹) & ⊢ (𝑥 = 𝐴 → 𝐸 = 𝐶) & ⊢ (𝑥 = 𝐵 → 𝐸 = 𝐷) & ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) & ⊢ (𝑥 = -𝑦 → 𝐸 = 𝐺) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐶 < 𝐷)) | ||
| Theorem | oddcomabszz 42915* | An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℤ) → 𝐶 = -𝐵) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = -𝑦 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝐸) & ⊢ (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹) | ||
| Theorem | 2nn0ind 42916* | Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝑦 ∈ ℕ → ((𝜃 ∧ 𝜏) → 𝜂)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 − 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜌)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜌) | ||
| Theorem | zindbi 42917* | Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (𝑦 ∈ ℤ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℤ → (𝜃 ↔ 𝜏)) | ||
| Theorem | rmxypos 42918 | For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))) | ||
| Theorem | ltrmynn0 42919 | The Y-sequence is strictly monotonic on ℕ0. Strengthened by ltrmy 42923. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
| Theorem | ltrmxnn0 42920 | The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) | ||
| Theorem | lermxnn0 42921 | The X-sequence is monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝐴 Xrm 𝑀) ≤ (𝐴 Xrm 𝑁))) | ||
| Theorem | rmxnn 42922 | The X-sequence is defined to range over ℕ0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) | ||
| Theorem | ltrmy 42923 | The Y-sequence is strictly monotonic over ℤ. (Contributed by Stefan O'Rear, 25-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁))) | ||
| Theorem | rmyeq0 42924 | Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) | ||
| Theorem | rmyeq 42925 | Y is one-to-one. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑁))) | ||
| Theorem | lermy 42926 | Y is monotonic (non-strict). (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) | ||
| Theorem | rmynn 42927 | Yrm is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℕ) | ||
| Theorem | rmynn0 42928 | Yrm is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) | ||
| Theorem | rmyabs 42929 | Yrm commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵))) | ||
| Theorem | jm2.24nn 42930 | X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to ℕ. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
| Theorem | jm2.17a 42931 | First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))) | ||
| Theorem | jm2.17b 42932 | Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) | ||
| Theorem | jm2.17c 42933 | Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1))) | ||
| Theorem | jm2.24 42934 | Lemma 2.24 of [JonesMatijasevic] p. 697 extended to ℤ. Could be eliminated with a more careful proof of jm2.26lem3 42972. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) | ||
| Theorem | rmygeid 42935 | Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) | ||
| Theorem | congtr 42936 | A wff of the form 𝐴 ∥ (𝐵 − 𝐶) is interpreted as a congruential equation. This is similar to (𝐵 mod 𝐴) = (𝐶 mod 𝐴), but is defined such that behavior is regular for zero and negative values of 𝐴. To use this concept effectively, we need to show that congruential equations behave similarly to normal equations; first a transitivity law. Idea for the future: If there was a congruential equation symbol, it could incorporate type constraints, so that most of these would not need them. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) | ||
| Theorem | congadd 42937 | If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸))) | ||
| Theorem | congmul 42938 | If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸))) | ||
| Theorem | congsym 42939 | Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | ||
| Theorem | congneg 42940 | If two integers are congruent mod 𝐴, so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (-𝐵 − -𝐶)) | ||
| Theorem | congsub 42941 | If two pairs of numbers are componentwise congruent, so are their differences. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐷 − 𝐸))) → 𝐴 ∥ ((𝐵 − 𝐷) − (𝐶 − 𝐸))) | ||
| Theorem | congid 42942 | Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐵 − 𝐵)) | ||
| Theorem | mzpcong 42943* | Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘 ∈ 𝑉 𝑁 ∥ ((𝑋‘𝑘) − (𝑌‘𝑘)))) → 𝑁 ∥ ((𝐹‘𝑋) − (𝐹‘𝑌))) | ||
| Theorem | congrep 42944* | Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) | ||
| Theorem | congabseq 42945 | If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < 𝐴 ↔ 𝐵 = 𝐶)) | ||
| Theorem | acongid 42946 |
A wff like that in this theorem will be known as an "alternating
congruence". A special symbol might be considered if more uses come
up.
They have many of the same properties as normal congruences, starting with
reflexivity.
JonesMatijasevic uses "a ≡ ± b (mod c)" for this construction. The disjunction of divisibility constraints seems to adequately capture the concept, but it's rather verbose and somewhat inelegant. Use of an explicit equivalence relation might also work. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐵 − 𝐵) ∨ 𝐴 ∥ (𝐵 − -𝐵))) | ||
| Theorem | acongsym 42947 | Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) | ||
| Theorem | acongneg2 42948 | Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∨ 𝐴 ∥ (𝐵 − --𝐶))) → (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) | ||
| Theorem | acongtr 42949 | Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) | ||
| Theorem | acongeq12d 42950 | Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) | ||
| Theorem | acongrep 42951* | Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎 − 𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁))) | ||
| Theorem | fzmaxdif 42952 | Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) | ||
| Theorem | fzneg 42953 | Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) | ||
| Theorem | acongeq 42954 | Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 42973. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))) | ||
| Theorem | dvdsacongtr 42955 | Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷 ∥ 𝐴 ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵 − 𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))) | ||
| Theorem | coprmdvdsb 42956 | Multiplication by a coprime number does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝐾 gcd 𝑀) = 1)) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | modabsdifz 42957 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) | ||
| Theorem | dvdsabsmod0 42958 | Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) | ||
| Theorem | jm2.18 42959 | Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) | ||
| Theorem | jm2.19lem1 42960 | Lemma for jm2.19 42964. X and Y values are coprime. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) | ||
| Theorem | jm2.19lem2 42961 | Lemma for jm2.19 42964. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) | ||
| Theorem | jm2.19lem3 42962 | Lemma for jm2.19 42964. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
| Theorem | jm2.19lem4 42963 | Lemma for jm2.19 42964. Extend to ZZ by symmetry. TODO: use zindbi 42917. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))) | ||
| Theorem | jm2.19 42964 | Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) | ||
| Theorem | jm2.21 42965 | Lemma for jm2.20nn 42968. Express X and Y values as a binomial. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽)) | ||
| Theorem | jm2.22 42966* | Lemma for jm2.20nn 42968. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽 − 𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) | ||
| Theorem | jm2.23 42967 | Lemma for jm2.20nn 42968. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))))) | ||
| Theorem | jm2.20nn 42968 | Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑2) ∥ (𝐴 Yrm 𝑀) ↔ (𝑁 · (𝐴 Yrm 𝑁)) ∥ 𝑀)) | ||
| Theorem | jm2.25lem1 42969 | Lemma for jm2.26 42973. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷 − 𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) | ||
| Theorem | jm2.25 42970 | Lemma for jm2.26 42973. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) | ||
| Theorem | jm2.26a 42971 | Lemma for jm2.26 42973. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) | ||
| Theorem | jm2.26lem3 42972 | Lemma for jm2.26 42973. Use acongrep 42951 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀) | ||
| Theorem | jm2.26 42973 | Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))) | ||
| Theorem | jm2.15nn0 42974 | Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))) | ||
| Theorem | jm2.16nn0 42975 | Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 42974 if Yrm is redefined as described in rmyluc 42908. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)) | ||
| Theorem | jm2.27a 42976 | Lemma for jm2.27 42979. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐷 = (𝐴 Xrm 𝑃)) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) & ⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝐼 = (𝐺 Xrm 𝑅)) & ⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
| Theorem | jm2.27b 42977 | Lemma for jm2.27 42979. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
| Theorem | jm2.27c 42978 | Lemma for jm2.27 42979. Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) & ⊢ 𝐷 = (𝐴 Xrm 𝐵) & ⊢ 𝑄 = (𝐵 · (𝐴 Yrm 𝐵)) & ⊢ 𝐸 = (𝐴 Yrm (2 · 𝑄)) & ⊢ 𝐹 = (𝐴 Xrm (2 · 𝑄)) & ⊢ 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) & ⊢ 𝐻 = (𝐺 Yrm 𝐵) & ⊢ 𝐼 = (𝐺 Xrm 𝐵) & ⊢ 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1) ⇒ ⊢ (𝜑 → (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0 ∧ 𝐻 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ≥‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻 − 𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻 − 𝐵) ∧ 𝐵 ≤ 𝐶)))))) | ||
| Theorem | jm2.27 42979* | Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 42976 and jm2.27c 42978. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ∃𝑔 ∈ ℕ0 ∃ℎ ∈ ℕ0 ∃𝑖 ∈ ℕ0 ∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ≥‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (ℎ↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (ℎ − 𝐶)) ∧ ((2 · 𝐶) ∥ (ℎ − 𝐵) ∧ 𝐵 ≤ 𝐶))))) | ||
| Theorem | jm2.27dlem1 42980* | Lemma for rmydioph 42985. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ (1...𝐵) ⇒ ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) | ||
| Theorem | jm2.27dlem2 42981 | Lemma for rmydioph 42985. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ (1...𝐵) & ⊢ 𝐶 = (𝐵 + 1) & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐶) | ||
| Theorem | jm2.27dlem3 42982 | Lemma for rmydioph 42985. Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐴) | ||
| Theorem | jm2.27dlem4 42983 | Lemma for rmydioph 42985. Infer ℕ-hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 = (𝐴 + 1) ⇒ ⊢ 𝐵 ∈ ℕ | ||
| Theorem | jm2.27dlem5 42984 | Lemma for rmydioph 42985. Used with sselii 3955 to infer membership of midpoints of range; jm2.27dlem2 42981 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐵 = (𝐴 + 1) & ⊢ (1...𝐵) ⊆ (1...𝐶) ⇒ ⊢ (1...𝐴) ⊆ (1...𝐶) | ||
| Theorem | rmydioph 42985 | jm2.27 42979 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | rmxdiophlem 42986* | X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) | ||
| Theorem | rmxdioph 42987 | X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | jm3.1lem1 42988 | Lemma for jm3.1 42991. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) | ||
| Theorem | jm3.1lem2 42989 | Lemma for jm3.1 42991. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) | ||
| Theorem | jm3.1lem3 42990 | Lemma for jm3.1 42991. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) | ||
| Theorem | jm3.1 42991 | Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) | ||
| Theorem | expdiophlem1 42992* | Lemma for expdioph 42994. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴↑𝐵)) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑 − 𝐴) · 𝑒)) − 𝐶)))))))) | ||
| Theorem | expdiophlem2 42993 | Lemma for expdioph 42994. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | expdioph 42994 | The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3) | ||
| Theorem | setindtr 42995* | Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9746; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → 𝐵 ∈ 𝐴)) | ||
| Theorem | setindtrs 42996* | Set induction scheme without Infinity. See comments at setindtr 42995. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝜒) | ||
| Theorem | dford3lem1 42997* | Lemma for dford3 42999. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) | ||
| Theorem | dford3lem2 42998* | Lemma for dford3 42999. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ ((Tr 𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr 𝑦) → 𝑥 ∈ On) | ||
| Theorem | dford3 42999* | Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of [Schloeder] p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) | ||
| Theorem | dford4 43000* | dford3 42999 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (Ord 𝑁 ↔ ∀𝑎∀𝑏∀𝑐((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑎) → (𝑏 ∈ 𝑁 ∧ (𝑐 ∈ 𝑏 → 𝑐 ∈ 𝑎)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |