Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege53aid | Structured version Visualization version GIF version |
Description: Specialization of frege53a 41330. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege53aid | ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege52aid 41328 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | ax-frege8 41279 | . 2 ⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege8 41279 ax-frege52a 41327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-tru 1546 df-fal 1556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |