| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege53aid | Structured version Visualization version GIF version | ||
| Description: Specialization of frege53a 43811. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege53aid | ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege52aid 43809 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | ax-frege8 43760 | . 2 ⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege8 43760 ax-frege52a 43808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |