MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ifp Structured version   Visualization version   GIF version

Definition df-ifp 1061
Description: Definition of the conditional operator for propositions. The expression if-(𝜑, 𝜓, 𝜒) is read "if 𝜑 then 𝜓 else 𝜒". See dfifp2 1062, dfifp3 1063, dfifp4 1064, dfifp5 1065, dfifp6 1066 and dfifp7 1067 for alternate definitions.

This definition (in the form of dfifp2 1062) appears in Section II.24 of [Church] p. 129 (Definition D12 page 132), where it is called "conditioned disjunction". Church's [𝜓, 𝜑, 𝜒] corresponds to our if-(𝜑, 𝜓, 𝜒) (note the permutation of the first two variables).

This form was chosen as the definition rather than dfifp2 1062 for compatibility with intuitionistic logic development: with this form, it is clear that if-(𝜑, 𝜓, 𝜒) implies decidability of 𝜑, which is most often what is wanted.

Church uses the conditional operator as an intermediate step to prove completeness of some systems of connectives. The first result is that the system {if-, ⊤, ⊥} is complete: for the induction step, consider a formula of n+1 variables; single out one variable, say 𝜑; when one sets 𝜑 to True (resp. False), then what remains is a formula of n variables, so by the induction hypothesis it is equivalent to a formula using only the connectives if-, ⊤, ⊥, say 𝜓 (resp. 𝜒); therefore, the formula if-(𝜑, 𝜓, 𝜒) is equivalent to the initial formula of n+1 variables. Now, since { → , ¬ } and similar systems suffice to express the connectives if-, ⊤, ⊥, they are also complete.

(Contributed by BJ, 22-Jun-2019.)

Assertion
Ref Expression
df-ifp (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))

Detailed syntax breakdown of Definition df-ifp
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
41, 2, 3wif 1060 . 2 wff if-(𝜑, 𝜓, 𝜒)
51, 2wa 396 . . 3 wff (𝜑𝜓)
61wn 3 . . . 4 wff ¬ 𝜑
76, 3wa 396 . . 3 wff 𝜑𝜒)
85, 7wo 844 . 2 wff ((𝜑𝜓) ∨ (¬ 𝜑𝜒))
94, 8wb 205 1 wff (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
Colors of variables: wff setvar class
This definition is referenced by:  dfifp2  1062  dfifp6  1066  ifpor  1070  casesifp  1076  ifpbi123dOLD  1078  1fpid3  1081  wlk1walk  28015  upgriswlk  28017  bj-df-ifc  34770  bj-dfif  34771  bj-ififc  34772  wl-ifp-ncond1  35644  wl-ifpimpr  35646  ifpdfan  41080  ifpnot23  41092  upgrwlkupwlk  45313
  Copyright terms: Public domain W3C validator