Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege56aid Structured version   Visualization version   GIF version

Theorem frege56aid 39003
Description: Lemma for frege57aid 39005. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege56aid (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓)))

Proof of Theorem frege56aid
StepHypRef Expression
1 frege55aid 38998 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 frege9 38945 . 2 (((𝜓𝜑) → (𝜑𝜓)) → (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓))))
31, 2ax-mp 5 1 (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 38923  ax-frege2 38924  ax-frege8 38942
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  frege57aid  39005
  Copyright terms: Public domain W3C validator