Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege56aid Structured version   Visualization version   GIF version

Theorem frege56aid 41367
Description: Lemma for frege57aid 41369. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege56aid (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓)))

Proof of Theorem frege56aid
StepHypRef Expression
1 frege55aid 41362 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 frege9 41309 . 2 (((𝜓𝜑) → (𝜑𝜓)) → (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓))))
31, 2ax-mp 5 1 (((𝜑𝜓) → (𝜑𝜓)) → ((𝜓𝜑) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  frege57aid  41369
  Copyright terms: Public domain W3C validator