Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56aid | Structured version Visualization version GIF version |
Description: Lemma for frege57aid 41369. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege56aid | ⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege55aid 41362 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
2 | frege9 41309 | . 2 ⊢ (((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) → (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 41287 ax-frege2 41288 ax-frege8 41306 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: frege57aid 41369 |
Copyright terms: Public domain | W3C validator |