Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege56a Structured version   Visualization version   GIF version

Theorem frege56a 39006
Description: Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege56a (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))))

Proof of Theorem frege56a
StepHypRef Expression
1 frege55cor1a 39004 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 frege9 38947 . 2 (((𝜓𝜑) → (𝜑𝜓)) → (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))))
31, 2ax-mp 5 1 (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  if-wif 1091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 38925  ax-frege2 38926  ax-frege8 38944  ax-frege28 38965  ax-frege52a 38992  ax-frege54a 38997
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092
This theorem is referenced by:  frege57a  39008
  Copyright terms: Public domain W3C validator