Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege56a Structured version   Visualization version   GIF version

Theorem frege56a 41368
Description: Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege56a (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))))

Proof of Theorem frege56a
StepHypRef Expression
1 frege55cor1a 41366 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 frege9 41309 . 2 (((𝜓𝜑) → (𝜑𝜓)) → (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))))
31, 2ax-mp 5 1 (((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege28 41327  ax-frege52a 41354  ax-frege54a 41359
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  frege57a  41370
  Copyright terms: Public domain W3C validator