Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege57aid Structured version   Visualization version   GIF version

Theorem frege57aid 41369
Description: This is the all imporant formula which allows us to apply Frege-style definitions and explore their consequences. A closed form of biimpri 227. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege57aid ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem frege57aid
StepHypRef Expression
1 frege52aid 41355 . 2 ((𝜓𝜑) → (𝜓𝜑))
2 frege56aid 41367 . 2 (((𝜓𝜑) → (𝜓𝜑)) → ((𝜑𝜓) → (𝜓𝜑)))
31, 2ax-mp 5 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege52a 41354
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-tru 1542  df-fal 1552
This theorem is referenced by:  frege68a  41383  frege68b  41410  frege68c  41428  frege100  41460
  Copyright terms: Public domain W3C validator