Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadbi123i | Structured version Visualization version GIF version |
Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadbii.1 | ⊢ (𝜑 ↔ 𝜓) |
hadbii.2 | ⊢ (𝜒 ↔ 𝜃) |
hadbii.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
hadbi123i | ⊢ (hadd(𝜑, 𝜒, 𝜏) ↔ hadd(𝜓, 𝜃, 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | hadbii.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) |
5 | hadbii.3 | . . . 4 ⊢ (𝜏 ↔ 𝜂) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝜏 ↔ 𝜂)) |
7 | 2, 4, 6 | hadbi123d 1597 | . 2 ⊢ (⊤ → (hadd(𝜑, 𝜒, 𝜏) ↔ hadd(𝜓, 𝜃, 𝜂))) |
8 | 7 | mptru 1546 | 1 ⊢ (hadd(𝜑, 𝜒, 𝜏) ↔ hadd(𝜓, 𝜃, 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 haddwhad 1595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 df-tru 1542 df-had 1596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |