| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbald | Structured version Visualization version GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbal 2167. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| hbald.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| hbald.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| hbald | ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbald.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | hbald.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | alimdh 1817 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑦∀𝑥𝜓)) |
| 4 | ax-11 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
| 5 | 3, 4 | syl6 35 | 1 ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-11 2157 |
| This theorem is referenced by: dvelimf-o 38947 |
| Copyright terms: Public domain | W3C validator |