Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbald | Structured version Visualization version GIF version |
Description: Deduction form of bound-variable hypothesis builder hbal 2167. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
hbald.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
hbald.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
hbald | ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbald.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | hbald.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | alimdh 1820 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑦∀𝑥𝜓)) |
4 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
5 | 3, 4 | syl6 35 | 1 ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-11 2154 |
This theorem is referenced by: dvelimf-o 36943 |
Copyright terms: Public domain | W3C validator |