MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbald Structured version   Visualization version   GIF version

Theorem hbald 2168
Description: Deduction form of bound-variable hypothesis builder hbal 2167. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
hbald.1 (𝜑 → ∀𝑦𝜑)
hbald.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
hbald (𝜑 → (∀𝑦𝜓 → ∀𝑥𝑦𝜓))

Proof of Theorem hbald
StepHypRef Expression
1 hbald.1 . . 3 (𝜑 → ∀𝑦𝜑)
2 hbald.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
31, 2alimdh 1820 . 2 (𝜑 → (∀𝑦𝜓 → ∀𝑦𝑥𝜓))
4 ax-11 2154 . 2 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
53, 4syl6 35 1 (𝜑 → (∀𝑦𝜓 → ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812  ax-11 2154
This theorem is referenced by:  dvelimf-o  36943
  Copyright terms: Public domain W3C validator