| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alimdh | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1810. (Contributed by NM, 4-Jan-2002.) |
| Ref | Expression |
|---|---|
| alimdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alimdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimdh | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimdh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | al2imi 1815 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alrimdh 1863 alimdv 1916 hbald 2168 alimd 2212 bj-nfald 37138 dral1-o 38905 ax12indalem 38946 ax12inda2ALT 38947 |
| Copyright terms: Public domain | W3C validator |