| Step | Hyp | Ref
| Expression |
| 1 | | alcom 2159 |
. 2
⊢
(∀𝑤∀𝑥(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑥∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 2 | | 19.21v 1939 |
. . . . . . 7
⊢
(∀𝑥(𝑦 = 𝑤 → 𝜑) ↔ (𝑦 = 𝑤 → ∀𝑥𝜑)) |
| 3 | 2 | albii 1819 |
. . . . . 6
⊢
(∀𝑦∀𝑥(𝑦 = 𝑤 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑤 → ∀𝑥𝜑)) |
| 4 | | alcom 2159 |
. . . . . 6
⊢
(∀𝑦∀𝑥(𝑦 = 𝑤 → 𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑)) |
| 5 | 3, 4 | bitr3i 277 |
. . . . 5
⊢
(∀𝑦(𝑦 = 𝑤 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑)) |
| 6 | 5 | imbi2i 336 |
. . . 4
⊢ ((𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → ∀𝑥𝜑)) ↔ (𝑤 = 𝑧 → ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 7 | 6 | albii 1819 |
. . 3
⊢
(∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → ∀𝑥𝜑)) ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 8 | | df-sb 2065 |
. . 3
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → ∀𝑥𝜑))) |
| 9 | | 19.21v 1939 |
. . . 4
⊢
(∀𝑥(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ (𝑤 = 𝑧 → ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 10 | 9 | albii 1819 |
. . 3
⊢
(∀𝑤∀𝑥(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑥∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 11 | 7, 8, 10 | 3bitr4i 303 |
. 2
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑤∀𝑥(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 12 | | df-sb 2065 |
. . 3
⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 13 | 12 | albii 1819 |
. 2
⊢
(∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
| 14 | 1, 11, 13 | 3bitr4i 303 |
1
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |