|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hbal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| hbal.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| hbal | ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbal.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| 3 | ax-11 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-11 2157 | 
| This theorem is referenced by: hbsbwOLD 2172 nfal 2323 cbv3v 2337 cbv3 2402 hbral 3308 wl-nfalv 37526 | 
| Copyright terms: Public domain | W3C validator |