Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
hbal.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbal | ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbal.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | alimi 1814 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
3 | ax-11 2154 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-11 2154 |
This theorem is referenced by: hbsbw 2169 nfal 2317 cbv3v 2332 cbv3 2397 hbral 3146 wl-nfalv 35684 |
Copyright terms: Public domain | W3C validator |