| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| hbal.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbal | ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbal.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| 3 | ax-11 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-11 2157 |
| This theorem is referenced by: hbsbwOLD 2172 nfal 2323 cbv3v 2336 cbv3 2401 hbral 3288 wl-nfalv 37543 |
| Copyright terms: Public domain | W3C validator |