Proof of Theorem dvelimf-o
Step | Hyp | Ref
| Expression |
1 | | hba1-o 36838 |
. . . . 5
⊢
(∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑧∀𝑧(𝑧 = 𝑦 → 𝜑)) |
2 | | ax-c11 36828 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
3 | 2 | aecoms-o 36843 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑧∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
4 | 1, 3 | syl5 34 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
5 | 4 | a1d 25 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)))) |
6 | | hbnae-o 36869 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑧) |
7 | | hbnae-o 36869 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) |
8 | 6, 7 | hban 2300 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑧(¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦)) |
9 | | hbnae-o 36869 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑧) |
10 | | hbnae-o 36869 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) |
11 | 9, 10 | hban 2300 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥(¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦)) |
12 | | ax-c9 36831 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
13 | 12 | imp 406 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
14 | | dvelimf-o.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥𝜑) |
15 | 14 | a1i 11 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝜑 → ∀𝑥𝜑)) |
16 | 11, 13, 15 | hbimd 2298 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
17 | 8, 16 | hbald 2170 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
18 | 17 | ex 412 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)))) |
19 | 5, 18 | pm2.61i 182 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
20 | | dvelimf-o.2 |
. . 3
⊢ (𝜓 → ∀𝑧𝜓) |
21 | | dvelimf-o.3 |
. . 3
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
22 | 20, 21 | equsalh 2420 |
. 2
⊢
(∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
23 | 22 | albii 1823 |
. 2
⊢
(∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
24 | 19, 22, 23 | 3imtr3g 294 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |