Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbaltg Structured version   Visualization version   GIF version

Theorem hbaltg 33783
Description: A more general and closed form of hbal 2167. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
hbaltg (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦𝑥𝜓))

Proof of Theorem hbaltg
StepHypRef Expression
1 alim 1813 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑥𝑦𝜓))
2 ax-11 2154 . 2 (∀𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
31, 2syl6 35 1 (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1812  ax-11 2154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator