Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbaltg | Structured version Visualization version GIF version |
Description: A more general and closed form of hbal 2167. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
hbaltg | ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim 1813 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑥∀𝑦𝜓)) | |
2 | ax-11 2154 | . 2 ⊢ (∀𝑥∀𝑦𝜓 → ∀𝑦∀𝑥𝜓) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1812 ax-11 2154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |