| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbimtg | Structured version Visualization version GIF version | ||
| Description: A more general and closed form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.) |
| Ref | Expression |
|---|---|
| hbimtg | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbntg 35806 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜒) → (¬ 𝜒 → ∀𝑥 ¬ 𝜑)) | |
| 2 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜃)) | |
| 3 | 2 | alimi 1811 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜃)) |
| 4 | 1, 3 | syl6 35 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜒) → (¬ 𝜒 → ∀𝑥(𝜑 → 𝜃))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → (¬ 𝜒 → ∀𝑥(𝜑 → 𝜃))) |
| 6 | ala1 1813 | . . . 4 ⊢ (∀𝑥𝜃 → ∀𝑥(𝜑 → 𝜃)) | |
| 7 | 6 | imim2i 16 | . . 3 ⊢ ((𝜓 → ∀𝑥𝜃) → (𝜓 → ∀𝑥(𝜑 → 𝜃))) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → (𝜓 → ∀𝑥(𝜑 → 𝜃))) |
| 9 | 5, 8 | jad 187 | 1 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: hbimg 35810 |
| Copyright terms: Public domain | W3C validator |