Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbimtg | Structured version Visualization version GIF version |
Description: A more general and closed form of hbim 2300. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
hbimtg | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbntg 33500 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜒) → (¬ 𝜒 → ∀𝑥 ¬ 𝜑)) | |
2 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜃)) | |
3 | 2 | alimi 1819 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜃)) |
4 | 1, 3 | syl6 35 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜒) → (¬ 𝜒 → ∀𝑥(𝜑 → 𝜃))) |
5 | 4 | adantr 484 | . 2 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → (¬ 𝜒 → ∀𝑥(𝜑 → 𝜃))) |
6 | ala1 1821 | . . . 4 ⊢ (∀𝑥𝜃 → ∀𝑥(𝜑 → 𝜃)) | |
7 | 6 | imim2i 16 | . . 3 ⊢ ((𝜓 → ∀𝑥𝜃) → (𝜓 → ∀𝑥(𝜑 → 𝜃))) |
8 | 7 | adantl 485 | . 2 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → (𝜓 → ∀𝑥(𝜑 → 𝜃))) |
9 | 5, 8 | jad 190 | 1 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: hbimg 33504 |
Copyright terms: Public domain | W3C validator |