Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbng Structured version   Visualization version   GIF version

Theorem hbng 33690
Description: A more general form of hbn 2295. (Contributed by Scott Fenton, 13-Dec-2010.)
Hypothesis
Ref Expression
hbg.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
hbng 𝜓 → ∀𝑥 ¬ 𝜑)

Proof of Theorem hbng
StepHypRef Expression
1 hbntg 33687 . 2 (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
2 hbg.1 . 2 (𝜑 → ∀𝑥𝜓)
31, 2mpg 1801 1 𝜓 → ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator