| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr | Structured version Visualization version GIF version | ||
| Description: Elimination of a conjunct. Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr | ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | adantl 481 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| Copyright terms: Public domain | W3C validator |