Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr | Structured version Visualization version GIF version |
Description: Elimination of a conjunct. Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Jun-2022.) |
Ref | Expression |
---|---|
simpr | ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | adantl 482 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
Copyright terms: Public domain | W3C validator |