Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 44633
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 44606 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 44597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44598
This theorem is referenced by:  trsspwALT  44838  sspwtr  44841  pwtrVD  44844  pwtrrVD  44845  snssiALTVD  44847  sstrALT2VD  44854  suctrALT2VD  44856  elex2VD  44858  elex22VD  44859  eqsbc2VD  44860  tpid3gVD  44862  en3lplem1VD  44863  en3lplem2VD  44864  3ornot23VD  44867  orbi1rVD  44868  19.21a3con13vVD  44872  exbirVD  44873  exbiriVD  44874  rspsbc2VD  44875  tratrbVD  44881  syl5impVD  44883  ssralv2VD  44886  imbi12VD  44893  imbi13VD  44894  sbcim2gVD  44895  sbcbiVD  44896  truniALTVD  44898  trintALTVD  44900  onfrALTlem3VD  44907  onfrALTlem2VD  44909  onfrALTlem1VD  44910  relopabVD  44921  19.41rgVD  44922  hbimpgVD  44924  ax6e2eqVD  44927  ax6e2ndeqVD  44929  sb5ALTVD  44933  vk15.4jVD  44934  con3ALTVD  44936
  Copyright terms: Public domain W3C validator