Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 42122
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 42095 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd2 42087
This theorem is referenced by:  trsspwALT  42327  sspwtr  42330  pwtrVD  42333  pwtrrVD  42334  snssiALTVD  42336  sstrALT2VD  42343  suctrALT2VD  42345  elex2VD  42347  elex22VD  42348  eqsbc2VD  42349  tpid3gVD  42351  en3lplem1VD  42352  en3lplem2VD  42353  3ornot23VD  42356  orbi1rVD  42357  19.21a3con13vVD  42361  exbirVD  42362  exbiriVD  42363  rspsbc2VD  42364  tratrbVD  42370  syl5impVD  42372  ssralv2VD  42375  imbi12VD  42382  imbi13VD  42383  sbcim2gVD  42384  sbcbiVD  42385  truniALTVD  42387  trintALTVD  42389  onfrALTlem3VD  42396  onfrALTlem2VD  42398  onfrALTlem1VD  42399  relopabVD  42410  19.41rgVD  42411  hbimpgVD  42413  ax6e2eqVD  42416  ax6e2ndeqVD  42418  sb5ALTVD  42422  vk15.4jVD  42423  con3ALTVD  42425
  Copyright terms: Public domain W3C validator