![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version |
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | 1 | dfvd2ir 40472 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: ( wvd2 40463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-vd2 40464 |
This theorem is referenced by: trsspwALT 40704 sspwtr 40707 pwtrVD 40710 pwtrrVD 40711 snssiALTVD 40713 sstrALT2VD 40720 suctrALT2VD 40722 elex2VD 40724 elex22VD 40725 eqsbc3rVD 40726 tpid3gVD 40728 en3lplem1VD 40729 en3lplem2VD 40730 3ornot23VD 40733 orbi1rVD 40734 19.21a3con13vVD 40738 exbirVD 40739 exbiriVD 40740 rspsbc2VD 40741 tratrbVD 40747 syl5impVD 40749 ssralv2VD 40752 imbi12VD 40759 imbi13VD 40760 sbcim2gVD 40761 sbcbiVD 40762 truniALTVD 40764 trintALTVD 40766 onfrALTlem3VD 40773 onfrALTlem2VD 40775 onfrALTlem1VD 40776 relopabVD 40787 19.41rgVD 40788 hbimpgVD 40790 ax6e2eqVD 40793 ax6e2ndeqVD 40795 sb5ALTVD 40799 vk15.4jVD 40800 con3ALTVD 40802 |
Copyright terms: Public domain | W3C validator |