Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 44584
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 44557 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 44548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44549
This theorem is referenced by:  trsspwALT  44789  sspwtr  44792  pwtrVD  44795  pwtrrVD  44796  snssiALTVD  44798  sstrALT2VD  44805  suctrALT2VD  44807  elex2VD  44809  elex22VD  44810  eqsbc2VD  44811  tpid3gVD  44813  en3lplem1VD  44814  en3lplem2VD  44815  3ornot23VD  44818  orbi1rVD  44819  19.21a3con13vVD  44823  exbirVD  44824  exbiriVD  44825  rspsbc2VD  44826  tratrbVD  44832  syl5impVD  44834  ssralv2VD  44837  imbi12VD  44844  imbi13VD  44845  sbcim2gVD  44846  sbcbiVD  44847  truniALTVD  44849  trintALTVD  44851  onfrALTlem3VD  44858  onfrALTlem2VD  44860  onfrALTlem1VD  44861  relopabVD  44872  19.41rgVD  44873  hbimpgVD  44875  ax6e2eqVD  44878  ax6e2ndeqVD  44880  sb5ALTVD  44884  vk15.4jVD  44885  con3ALTVD  44887
  Copyright terms: Public domain W3C validator