Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 43359
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 43332 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 43323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd2 43324
This theorem is referenced by:  trsspwALT  43564  sspwtr  43567  pwtrVD  43570  pwtrrVD  43571  snssiALTVD  43573  sstrALT2VD  43580  suctrALT2VD  43582  elex2VD  43584  elex22VD  43585  eqsbc2VD  43586  tpid3gVD  43588  en3lplem1VD  43589  en3lplem2VD  43590  3ornot23VD  43593  orbi1rVD  43594  19.21a3con13vVD  43598  exbirVD  43599  exbiriVD  43600  rspsbc2VD  43601  tratrbVD  43607  syl5impVD  43609  ssralv2VD  43612  imbi12VD  43619  imbi13VD  43620  sbcim2gVD  43621  sbcbiVD  43622  truniALTVD  43624  trintALTVD  43626  onfrALTlem3VD  43633  onfrALTlem2VD  43635  onfrALTlem1VD  43636  relopabVD  43647  19.41rgVD  43648  hbimpgVD  43650  ax6e2eqVD  43653  ax6e2ndeqVD  43655  sb5ALTVD  43659  vk15.4jVD  43660  con3ALTVD  43662
  Copyright terms: Public domain W3C validator