Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 44611
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 44584 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 44575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44576
This theorem is referenced by:  trsspwALT  44816  sspwtr  44819  pwtrVD  44822  pwtrrVD  44823  snssiALTVD  44825  sstrALT2VD  44832  suctrALT2VD  44834  elex2VD  44836  elex22VD  44837  eqsbc2VD  44838  tpid3gVD  44840  en3lplem1VD  44841  en3lplem2VD  44842  3ornot23VD  44845  orbi1rVD  44846  19.21a3con13vVD  44850  exbirVD  44851  exbiriVD  44852  rspsbc2VD  44853  tratrbVD  44859  syl5impVD  44861  ssralv2VD  44864  imbi12VD  44871  imbi13VD  44872  sbcim2gVD  44873  sbcbiVD  44874  truniALTVD  44876  trintALTVD  44878  onfrALTlem3VD  44885  onfrALTlem2VD  44887  onfrALTlem1VD  44888  relopabVD  44899  19.41rgVD  44900  hbimpgVD  44902  ax6e2eqVD  44905  ax6e2ndeqVD  44907  sb5ALTVD  44911  vk15.4jVD  44912  con3ALTVD  44914
  Copyright terms: Public domain W3C validator