| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | 1 | dfvd2ir 44627 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ( wvd2 44618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44619 |
| This theorem is referenced by: trsspwALT 44858 sspwtr 44861 pwtrVD 44864 pwtrrVD 44865 snssiALTVD 44867 sstrALT2VD 44874 suctrALT2VD 44876 elex2VD 44878 elex22VD 44879 eqsbc2VD 44880 tpid3gVD 44882 en3lplem1VD 44883 en3lplem2VD 44884 3ornot23VD 44887 orbi1rVD 44888 19.21a3con13vVD 44892 exbirVD 44893 exbiriVD 44894 rspsbc2VD 44895 tratrbVD 44901 syl5impVD 44903 ssralv2VD 44906 imbi12VD 44913 imbi13VD 44914 sbcim2gVD 44915 sbcbiVD 44916 truniALTVD 44918 trintALTVD 44920 onfrALTlem3VD 44927 onfrALTlem2VD 44929 onfrALTlem1VD 44930 relopabVD 44941 19.41rgVD 44942 hbimpgVD 44944 ax6e2eqVD 44947 ax6e2ndeqVD 44949 sb5ALTVD 44953 vk15.4jVD 44954 con3ALTVD 44956 |
| Copyright terms: Public domain | W3C validator |