Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version |
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | 1 | dfvd2ir 42577 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: ( wvd2 42568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-vd2 42569 |
This theorem is referenced by: trsspwALT 42809 sspwtr 42812 pwtrVD 42815 pwtrrVD 42816 snssiALTVD 42818 sstrALT2VD 42825 suctrALT2VD 42827 elex2VD 42829 elex22VD 42830 eqsbc2VD 42831 tpid3gVD 42833 en3lplem1VD 42834 en3lplem2VD 42835 3ornot23VD 42838 orbi1rVD 42839 19.21a3con13vVD 42843 exbirVD 42844 exbiriVD 42845 rspsbc2VD 42846 tratrbVD 42852 syl5impVD 42854 ssralv2VD 42857 imbi12VD 42864 imbi13VD 42865 sbcim2gVD 42866 sbcbiVD 42867 truniALTVD 42869 trintALTVD 42871 onfrALTlem3VD 42878 onfrALTlem2VD 42880 onfrALTlem1VD 42881 relopabVD 42892 19.41rgVD 42893 hbimpgVD 42895 ax6e2eqVD 42898 ax6e2ndeqVD 42900 sb5ALTVD 42904 vk15.4jVD 42905 con3ALTVD 42907 |
Copyright terms: Public domain | W3C validator |