![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version |
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | 1 | dfvd2ir 43347 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: ( wvd2 43338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-vd2 43339 |
This theorem is referenced by: trsspwALT 43579 sspwtr 43582 pwtrVD 43585 pwtrrVD 43586 snssiALTVD 43588 sstrALT2VD 43595 suctrALT2VD 43597 elex2VD 43599 elex22VD 43600 eqsbc2VD 43601 tpid3gVD 43603 en3lplem1VD 43604 en3lplem2VD 43605 3ornot23VD 43608 orbi1rVD 43609 19.21a3con13vVD 43613 exbirVD 43614 exbiriVD 43615 rspsbc2VD 43616 tratrbVD 43622 syl5impVD 43624 ssralv2VD 43627 imbi12VD 43634 imbi13VD 43635 sbcim2gVD 43636 sbcbiVD 43637 truniALTVD 43639 trintALTVD 43641 onfrALTlem3VD 43648 onfrALTlem2VD 43650 onfrALTlem1VD 43651 relopabVD 43662 19.41rgVD 43663 hbimpgVD 43665 ax6e2eqVD 43668 ax6e2ndeqVD 43670 sb5ALTVD 43674 vk15.4jVD 43675 con3ALTVD 43677 |
Copyright terms: Public domain | W3C validator |