| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | 1 | dfvd2ir 44611 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ( wvd2 44602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44603 |
| This theorem is referenced by: trsspwALT 44842 sspwtr 44845 pwtrVD 44848 pwtrrVD 44849 snssiALTVD 44851 sstrALT2VD 44858 suctrALT2VD 44860 elex2VD 44862 elex22VD 44863 eqsbc2VD 44864 tpid3gVD 44866 en3lplem1VD 44867 en3lplem2VD 44868 3ornot23VD 44871 orbi1rVD 44872 19.21a3con13vVD 44876 exbirVD 44877 exbiriVD 44878 rspsbc2VD 44879 tratrbVD 44885 syl5impVD 44887 ssralv2VD 44890 imbi12VD 44897 imbi13VD 44898 sbcim2gVD 44899 sbcbiVD 44900 truniALTVD 44902 trintALTVD 44904 onfrALTlem3VD 44911 onfrALTlem2VD 44913 onfrALTlem1VD 44914 relopabVD 44925 19.41rgVD 44926 hbimpgVD 44928 ax6e2eqVD 44931 ax6e2ndeqVD 44933 sb5ALTVD 44937 vk15.4jVD 44938 con3ALTVD 44940 |
| Copyright terms: Public domain | W3C validator |