| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idn2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idn2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | 1 | dfvd2ir 44549 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ( wvd2 44540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44541 |
| This theorem is referenced by: trsspwALT 44780 sspwtr 44783 pwtrVD 44786 pwtrrVD 44787 snssiALTVD 44789 sstrALT2VD 44796 suctrALT2VD 44798 elex2VD 44800 elex22VD 44801 eqsbc2VD 44802 tpid3gVD 44804 en3lplem1VD 44805 en3lplem2VD 44806 3ornot23VD 44809 orbi1rVD 44810 19.21a3con13vVD 44814 exbirVD 44815 exbiriVD 44816 rspsbc2VD 44817 tratrbVD 44823 syl5impVD 44825 ssralv2VD 44828 imbi12VD 44835 imbi13VD 44836 sbcim2gVD 44837 sbcbiVD 44838 truniALTVD 44840 trintALTVD 44842 onfrALTlem3VD 44849 onfrALTlem2VD 44851 onfrALTlem1VD 44852 relopabVD 44863 19.41rgVD 44864 hbimpgVD 44866 ax6e2eqVD 44869 ax6e2ndeqVD 44871 sb5ALTVD 44875 vk15.4jVD 44876 con3ALTVD 44878 |
| Copyright terms: Public domain | W3C validator |