| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim3 | Structured version Visualization version GIF version | ||
| Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpim3 | ⊢ ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | orc 868 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | ifpim23g 43508 | . 2 ⊢ (((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) ↔ (((𝜑 ∧ 𝜓) → 𝜑) ∧ (𝜑 → (𝜑 ∨ 𝜓)))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpnim1 43510 |
| Copyright terms: Public domain | W3C validator |