Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim3 | Structured version Visualization version GIF version |
Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpim3 | ⊢ ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | ifpim23g 40787 | . 2 ⊢ (((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) ↔ (((𝜑 ∧ 𝜓) → 𝜑) ∧ (𝜑 → (𝜑 ∨ 𝜓)))) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 if-wif 1063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 |
This theorem is referenced by: ifpnim1 40789 |
Copyright terms: Public domain | W3C validator |