Proof of Theorem ifpim23g
Step | Hyp | Ref
| Expression |
1 | | ifpidg 40996 |
. 2
⊢ (((𝜑 → 𝜓) ↔ if-(𝜒, 𝜓, ¬ 𝜑)) ↔ ((((𝜒 ∧ 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓)) ∧ ((¬ 𝜑 → (𝜒 ∨ (𝜑 → 𝜓))) ∧ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑))))) |
2 | | dfor2 898 |
. . . . 5
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 → 𝜓) → 𝜓)) |
3 | 2 | imbi2i 335 |
. . . 4
⊢ ((𝜒 → (𝜑 ∨ 𝜓)) ↔ (𝜒 → ((𝜑 → 𝜓) → 𝜓))) |
4 | | impexp 450 |
. . . 4
⊢ (((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓) ↔ (𝜒 → ((𝜑 → 𝜓) → 𝜓))) |
5 | | ax-1 6 |
. . . . . 6
⊢ (𝜓 → (𝜑 → 𝜓)) |
6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝜒 ∧ 𝜓) → (𝜑 → 𝜓)) |
7 | 6 | biantrur 530 |
. . . 4
⊢ (((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓) ↔ (((𝜒 ∧ 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓))) |
8 | 3, 4, 7 | 3bitr2i 298 |
. . 3
⊢ ((𝜒 → (𝜑 ∨ 𝜓)) ↔ (((𝜒 ∧ 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓))) |
9 | | impexp 450 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
10 | | imdi 390 |
. . . . . 6
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
11 | | imor 849 |
. . . . . . . 8
⊢ ((𝜑 → 𝜒) ↔ (¬ 𝜑 ∨ 𝜒)) |
12 | | orcom 866 |
. . . . . . . 8
⊢ ((¬
𝜑 ∨ 𝜒) ↔ (𝜒 ∨ ¬ 𝜑)) |
13 | 11, 12 | bitri 274 |
. . . . . . 7
⊢ ((𝜑 → 𝜒) ↔ (𝜒 ∨ ¬ 𝜑)) |
14 | 13 | imbi2i 335 |
. . . . . 6
⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑))) |
15 | 10, 14 | bitri 274 |
. . . . 5
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑))) |
16 | 9, 15 | bitri 274 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑))) |
17 | | pm2.21 123 |
. . . . . 6
⊢ (¬
𝜑 → (𝜑 → 𝜓)) |
18 | 17 | olcd 870 |
. . . . 5
⊢ (¬
𝜑 → (𝜒 ∨ (𝜑 → 𝜓))) |
19 | 18 | biantrur 530 |
. . . 4
⊢ (((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑)) ↔ ((¬ 𝜑 → (𝜒 ∨ (𝜑 → 𝜓))) ∧ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑)))) |
20 | 16, 19 | bitri 274 |
. . 3
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((¬ 𝜑 → (𝜒 ∨ (𝜑 → 𝜓))) ∧ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑)))) |
21 | 8, 20 | anbi12i 626 |
. 2
⊢ (((𝜒 → (𝜑 ∨ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜒)) ↔ ((((𝜒 ∧ 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜒 ∧ (𝜑 → 𝜓)) → 𝜓)) ∧ ((¬ 𝜑 → (𝜒 ∨ (𝜑 → 𝜓))) ∧ ((𝜑 → 𝜓) → (𝜒 ∨ ¬ 𝜑))))) |
22 | | ancom 460 |
. 2
⊢ (((𝜒 → (𝜑 ∨ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜒)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ (𝜒 → (𝜑 ∨ 𝜓)))) |
23 | 1, 21, 22 | 3bitr2i 298 |
1
⊢ (((𝜑 → 𝜓) ↔ if-(𝜒, 𝜓, ¬ 𝜑)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ (𝜒 → (𝜑 ∨ 𝜓)))) |